Article

Estructura y función de la unidad fundamental de replicación del DNA (el replicón) en eucariontes

Ciencia Ergo Sum 01/2008; 15(3):269-286.
Source: DOAJ

ABSTRACT La replicación del dna es indispensable para la transmisión de la información genética y permite copiar el genoma con gran exactitud. Desde el siglo pasado se propuso el modelo del replicón para explicar el mecanismo general de duplicación del genoma en bacterias. Estudios posteriores en la levadura permitieron identificar proteínas y secuencias de dna que participan en el inicio de la replicación en forma similar a lo descrito en procariontes, esto condujo a intentar generalizar el modelo del replicón a los eucariontes. Se han descrito algunos factores clave en el proceso de replicación que están conservados desde la levadura hasta el humano. Sin embargo, todavía no se comprende cómo se determinan los sitios de inicio de la replicación y cuál es la estructura del replicón en los metazoarios. En este artículo se sugiere que la organización topológica del dna en el núcleo celular determina la estructura y función de los replicones en los eucariontes superiores.

0 0
 · 
0 Bookmarks
 · 
187 Views
  • [show abstract] [hide abstract]
    ABSTRACT: The origin recognition complex (ORC) plays a central role in regulating the initiation of DNA replication in eukaryotes. The level of the ORC1 subunit oscillates throughout the cell cycle, defining an ORC1 cycle. ORC1 accumulates in G1 and is degraded in S phase, although other ORC subunits (ORCs 2-5) remain at almost constant levels. The behavior of ORC components in human cell nuclei with respect to the ORC1 cycle demonstrates that ORCs 2-5 form a complex that is present throughout the cell cycle and that associates with ORC1 when it accumulates in G1 nuclei. ORCs 2-5 are found in both nuclease-insoluble and -soluble fractions. The appearance of nuclease-insoluble ORCs 2-5 parallels the increase in the level of ORC1 associating with nuclease-insoluble, non-chromatin nuclear structures. Thus, ORCs 2-5 are temporally recruited to nuclease-insoluble structures by formation of the ORC1-5 complex. An artificial reduction in the level of ORC1 in human cells by RNA interference results in a shift of ORC2 to the nuclease-soluble fraction, and the association of MCM proteins with chromatin fractions is also blocked by this treatment. These results indicate that ORC1 regulates the status of the ORC complex in human nuclei by tethering ORCs 2-5 to nuclear structures. This dynamic shift is further required for the loading of MCM proteins onto chromatin. Thus, the pre-replication complex in human cells may be regulated by the temporal accumulation of ORC1 in G1 nuclei.
    Journal of Biological Chemistry 11/2003; 278(42):41535-40. · 4.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Components of ORC (the origin recognition complex) are highly conserved among eukaryotes and are thought to play an essential role in the initiation of DNA replication. The level of the largest subunit of human ORC (ORC1) during the cell cycle was studied in several human cell lines with a specific antibody. In all cell lines, ORC1 levels oscillate: ORC1 starts to accumulate in mid-G1 phase, reaches a peak at the G1/S boundary, and decreases to a basal level in S phase. In contrast, the levels of other ORC subunits (ORCs 2-5) remain constant throughout the cell cycle. The oscillation of ORC1, or the ORC1 cycle, also occurs in cells expressing ORC1 ectopically from a constitutive promoter. Furthermore, the 26 S proteasome inhibitor MG132 blocks the decrease in ORC1, suggesting that the ORC1 cycle is mainly due to 26 S proteasome-dependent degradation. Arrest of the cell cycle in early S phase by hydroxyurea, aphidicolin, or thymidine treatment is associated with basal levels of ORC1, indicating that ORC1 proteolysis starts in early S phase and is independent of S phase progression. These observations indicate that the ORC1 cycle in human cells is highly linked with cell cycle progression, allowing the initiation of replication to be coordinated with the cell cycle and preventing origins from refiring.
    Journal of Biological Chemistry 11/2003; 278(42):41528-34. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The replication initiation pattern of the murine beta-globin locus was analyzed in totipotent embryonic stem cells and in differentiated cell lines. Initiation events in the murine beta-globin locus were detected in a region extending from the embryonic Ey gene to the adult betaminor gene, unlike the restricted initiation observed in the human locus. Totipotent and differentiated cells exhibited similar initiation patterns. Deletion of the region between the adult globin genes did not prevent initiation in the remainder of the locus, suggesting that the potential to initiate DNA replication was not contained exclusively within the primary sequence of the deleted region. In addition, a deletion encompassing the six identified 5' hypersensitive sites in the mouse locus control region had no effect on initiation from within the locus. As this deletion also did not affect the chromatin structure of the locus, we propose that the sequences determining both chromatin structure and replication initiation lie outside the hypersensitive sites removed by the deletion.
    Molecular and Cellular Biology 02/2002; 22(2):442-52. · 5.37 Impact Factor

Full-text (5 Sources)

View
74 Downloads
Available from
Feb 1, 2013