Uso de las cadenas de Markov en la selección de políticas de mantenimiento

Scientia Et Technica 01/2007;
Source: DOAJ


Actualmente el mantenimiento ha dejado de ser aquel campo que perseguía como único objeto mantener en un estado operacional los sistemas y se ha convertido ahora en la herramienta fundamental para toda empresa que busca conseguir objetivos corporativos que siempre recaen sobre un dominio total de los procesos productivos. Debido a la naturaleza estocástica inherente a los componentes de un sistema, en este artículo, se muestra el uso de las cadenas de Markov para la evaluación de políticas de mantenimiento, mostrando la forma de implementación y como decidir sobre diferentes políticas de acuerdo con los resultados obtenidos.

Download full-text


Available from: Gustavo Betancourt, Oct 13, 2015
1 Follower
59 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Uncertainty is present in virtually all replacement decisions due to unknown future events, such as revenue streams, maintenance costs, and inflation. Fuzzy sets provide a mathematical framework for explicitly incorporating imprecision into the decision making model, especially when the system involves human subjectivity. This paper illustrates the use of fuzzy sets and possibility theory to explicitly model uncertainty in replacement decisions via fuzzy variables and numbers. In particular, a fuzzy set approach to economic life of an asset calculation as well as a finite-horizon single asset replacement problem with multiple challengers is discussed. Because the use of triangular fuzzy numbers provides a compromise between computational efficiency and realistic modeling of the uncertainty, this discussion emphasizes fuzzy numbers. The algorithms used to determine the optimal replacement policy incorporate fuzzy arithmetic, dynamic programming (DP) with fuzzy rewards, the vertex method, and various ranking methods for fuzzy numbers. A brief history of replacement analysis, current conventional techniques, the basic concepts of fuzzy sets and possibility theory, and the advantages of the fuzzy generalization are also discussed
    IEEE Transactions on Systems Man and Cybernetics Part C (Applications and Reviews) 12/1998; 28(4-28):549 - 560. DOI:10.1109/5326.725341 · 2.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Presented at the 10DBMC International Conférence On Durability of Building Materials and Components, Lyon, France, 17-20 April 2005 Making decisions on building maintenance policies is an important topic in facility management. To evaluate different maintenance policies and make rational selection, both performance and maintenance cost of building components need to be of concern. For roofing sytem Markov Chain model has been developed to simulate the stochastic degrading process to evaluate the life cycle perfornance and cost. [Van Winden and Dekker 1998; Lounis et al. 1999] Taking value in a discrete state space, this model is especially appropriate when scaled rating regular inspections and related mainteance policies are implemented in large organizations. [Van Winden and Dekker 1998] However, many parameters in this Markov Chain model are associated with variance of significant magnitude. The propagation of these variances through the model will result in uncertainties in predicted life cycle performance and cost results. Without a solid uncertainty analysis on the simulation, decisions based on these simulation results can be unrealiable. In this paper we provide methods to estimate the range of parameter values and represent them in a probabilistic framwork. Monte Carlo method is used to analyze simulation output (life cycle cost and performance) variance propagated from these parameters through the model. These probablisitc informnation can be used to make better informed decisions. An example is provided to illustrate the Markov Chain model development, parameter identification method, Monte-Carlo uncertainty assessment and decision making with probabilistic information. It is shown that the uncertainty propagating through this process is not negligible and may significantly influence or even change the final decision
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Incluye bibliografía e índice
Show more