The COBLL1 C allele is associated with lower serum insulin levels and lower insulin resistance in overweight and obese children

Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Italy.
Diabetes/Metabolism Research and Reviews (Impact Factor: 3.55). 07/2013; 29(5). DOI: 10.1002/dmrr.2408


Childhood obesity is a growing epidemic worldwide, and it is associated with metabolic complications, such as insulin resistance. Recently, a genetic variation (rs7607980) in the COBLL1 gene has been associated with lower insulin resistance in adults. The aim of the study was to investigate if the association between COBLL1 rs7607980 genetic variant and lower insulin resistance was present early in life. Methods
This sequence variant was genotyped in 878 overweight and obese children (mean age: 10 years) from Sardinia, Italy, from the outpatient clinic of the Pediatric Endocrine Unit, at the Regional Hospital for Microcitaemia in Cagliari. Insulin resistance was assessed by measurement of fasting circulating insulin levels before and after an oral glucose tolerance test and by HOMA-IR. ResultsThe COBLL1 rs7607980 C allele was associated with lower fasting insulin and HOMA-IR levels (p = 0.002 and p = 0.035, respectively) in overweight and obese children. Importantly, lower insulin levels were also observed 2 h after oral glucose tolerance test in C allele carriers (p = 0.009). Conclusions
The present study shows for the first time, the association between COBLL1 rs7607980 C allele, lower serum insulin levels and lower insulin resistance in overweight and obese children. Copyright © 2013 John Wiley & Sons, Ltd.

Download full-text


Available from: Sandro Loche, Apr 14, 2014
13 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Comparative genome-wide expression profiling of malignant tumor counterparts across the human-mouse species barrier has a successful track record as a gene discovery tool in liver, breast, lung, prostate and other cancers, but has been largely neglected in studies on neoplasms of mature B-lymphocytes such as diffuse large B cell lymphoma (DLBCL) and Burkitt lymphoma (BL). We used global gene expression profiles of DLBCL-like tumors that arose spontaneously in Myc-transgenic C57BL/6 mice as a phylogenetically conserved filter for analyzing the human DLBCL transcriptome. The human and mouse lymphomas were found to have 60 concordantly deregulated genes in common, including 8 genes that Cox hazard regression analysis associated with overall survival in a published landmark dataset of DLBCL. Genetic network analysis of the 60 genes followed by biological validation studies indicate FOXM1 as a candidate DLBCL and BL gene, supporting a number of studies contending that FOXM1 is a therapeutic target in mature B cell tumors. Our findings demonstrate the value of the "mouse filter" for genomic studies of human B-lineage neoplasms for which a vast knowledge base already exists.
    PLoS ONE 10/2013; 8(10):e76889. DOI:10.1371/journal.pone.0076889 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Visceral fat is strongly associated with the development of specific obesity-related metabolic alterations. Genetic and epigenetic mechanisms seem to be involved in the development of obesity and visceral adiposity. The aims of this review are to identify the single-nucleotide polymorphisms related to central obesity and to summarize the main findings on DNA methylation and obesity. A search of the MEDLINE database was conducted to identify genome-wide association studies, meta-analyses of genome-wide association studies, and gene-diet interaction studies related to central obesity, and, in addition, studies that analyzed DNA methylation in relation to body weight regulation. A total of 8 genome-wide association studies and 9 meta-analyses of genome-wide association studies reported numerous single-nucleotide polymorphisms to be associated with central obesity. Ten studies analyzed gene-diet interactions and central obesity, while 2 epigenome-wide association studies analyzed DNA methylation patterns and obesity. Nine studies investigated the relationship between DNA methylation and weight loss, excess body weight, or adiposity outcomes. Given the development of new sequencing and omics technologies, significantly more knowledge on genomics and epigenomics of obesity and body fat distribution will emerge in the near future.
    Nutrition Reviews 10/2014; 72(11). DOI:10.1111/nure.12143 · 6.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to investigate the alternative splicing in equine cordon-bleu WH2 repeat protein-like 1 (COBLL1) gene that was identified in horse muscle and blood leukocytes, and to predict functional consequences of alternative splicing by bioinformatics analysis. In a previous study, RNA-seq analysis predicted the presence of alternative spliced isoforms of equine COBLL1, namely COBLL1a as a long form and COBLL1b as a short form. In this study, we validated two isoforms of COBLL1 transcripts in horse tissues by the real-time polymerase chain reaction, and cloned them for Sanger sequencing. The sequencing results showed that the alternative splicing occurs at exon 9. Prediction of protein structure of these isoforms revealed three putative phosphorylation sites at the amino acid sequences encoded in exon 9, which is deleted in COBLL1b. In expression analysis, it was found that COBLL1b was expressed ubiquitously and equivalently in all the analyzed tissues, whereas COBLL1a showed strong expression in kidney, spinal cord and lung, moderate expression in heart and skeletal muscle, and low expression in thyroid and colon. In muscle, both COBLL1a and COBLL1b expression decreased after exercise. It is assumed that the regulation of COBLL1 expression may be important for regulating glucose level or switching of energy source, possibly through an insulin signaling pathway, in muscle after exercise. Further study is warranted to reveal the functional importance of COBLL1 on athletic performance in race horses.
    Asian Australasian Journal of Animal Sciences 06/2015; 28(6):870-875. DOI:10.5713/ajas.14.0722 · 0.54 Impact Factor