Article

Surprisingly small HONO emissions from snow surfaces at Browning Pass, Antarctica

Atmospheric Chemistry and Physics 01/2006; DOI: 10.5194/acp-6-2569-2006
Source: DOAJ

ABSTRACT Measured Fluxes of nitrous acid at Browning Pass, Antarctica were very low, despite conditions that are generally understood as favorable for HONO emissions, including: acidic snow surfaces, an abundance of NO3- anions in the snow surface, and abundant UV light for NO3- photolysis. Photochemical modeling suggests noon time HONO fluxes of 5–10 nmol m-2 h-1; the measured fluxes, however, were close to zero throughout the campaign. The location and state of NO3- in snow is crucial to its reactivity. The analysis of soluble mineral ions in snow reveals that the NO3- ion is probably present in aged snows as NaNO3. This is peculiar to our study site, and we suggest that this may affect the photochemical reactivity of NO3-, by preventing the release of products, or providing a reactive medium for newly formed HONO. In fresh snow, the NO3- ion is probably present as dissolved or adsorbed HNO3 and yet, no HONO emissions were observed. We speculate that HONO formation from NO3- photolysis may involve electron transfer reactions of NO2 from photosensitized organics and that fresh snows at our site had insufficient concentrations of adequate organic compounds to favor this reaction.

0 Bookmarks
 · 
83 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: HONO was measured by a LOPAP instrument (LOng Path Absorption Photometer) for one month during the OASIS spring 2009 campaign in Barrow, Alaska. HONO concentrations between ≤ 0.4 pptv (DL) and ˜500 pptv were measured. The very high concentrations observed on several days were caused by local direct emissions and were highly correlated with the NOx and CO data. When only "clean days" were considered, average HONO concentrations varied between ≤ 0.4 - 10 pptv. Average HONO/NOx and HONO/NOy ratios of ˜6% and ˜1% were observed, respectively, in good agreement with other remote LOPAP measurement data, but lower than measured in most other polar regions by other methods. The strong correlation between sharp peaks of OH and HONO during daytime, which was not observed for any other measured radical precursor, suggested that HONO photolysis was a major source of OH radicals in Barrow. This was supported by calculated net OH radical production by HONO and O3 photolysis for which the contribution of O3 (2%) could be neglected compared to that of HONO (98%). A net extra HONO/OH source necessary to explain elevated HONO levels during daytime of up to 90 pptv/h was determined, which was highly correlated with the actinic flux. Accordingly, a photochemical HONO source is proposed here, in good agreement with recent studies. From the higher correlation of the net HONO source with ? and [NO2] compared to ? and [NO3-], photosensitized conversion of NO2 on humic acid containing snow surfaces may be a more likely source of HONO in the polar atmosphere of Barrow than nitrate photolysis.
    Journal of Geophysical Research Atmospheres 07/2011; 116(D14). · 3.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the most recent important finding made in Antarctica after the discovery of the appearance of the Antarctic ozone hole in the early 80's was the discovery of a very oxidizing canopy over the South Pole region in relation with unexpected high levels of NO. There is a strong need however to extend investigations of the oxidation capacity of the lower atmosphere at the scale of the whole Antarctic continent, and in particular, over East Antarctica. That motivated the OPALE (Oxidant Production over Antarctic Land and its Export) project. Indeed the limited data gained by using aircraft sampling during ANTCI 2003 suggest that over the East Antarctic plateau even higher NO emissions persist. Among several not yet resolved questions related to the high level of oxidants over Antarctica is the role of nitrous acid (HONO). During the austral summer 2010/2011 the levels of nitrous acid (HONO) were for the first time investigated at Concordia (75°06'S, 123°33'E) and Dumont D'Urville (66°40'S, 140°01'E), two stations located in East Antarctica. Also for the first time in Antarctica, HONO was measured by deploying a long path absorption photometer (LOPAP). At Concordia, from the end of December 2010 to mid January 2011 HONO mixing ratios at 1 m above the snow surface ranged between 5 and 60 pptv. Diurnal cycles were observed with levels peaking in the morning (06:30 to 07:30) and the evening (19:00 to 20:00). At Dumont d'Urville, background mixing ratios close to 2 pptv were observed in February 2011. No clear diurnal cycles were observed at that site but several events of air masses export from inland Antarctica were encountered with enhanced HONO levels reaching 10 pptv at night. These first HONO data gained in East Antarctica are discussed in terms of sources and sinks along with synoptic weather conditions.
    Journal of Geophysical Research Atmospheres 04/2012; 117(D8):4783-. · 3.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.
    Environmental Science & Technology 11/2013; · 5.48 Impact Factor

Full-text (2 Sources)

Download
29 Downloads
Available from
May 15, 2014