Decorticate, decerebrate and opisthotonic posturing and seizures in Kenyan children with cerebral malaria

Centre for Geographic Medicine Research-Coast, Kenya Medical Research, Kenya.
Malaria Journal (Impact Factor: 3.11). 12/2005; 4(1). DOI: 10.1186/1475-2875-4-57
Source: DOAJ


Abnormal motor posturing is often observed in children with cerebral malaria, but the aetiology and pathogenesis is poorly understood. This study examined the risk factors and outcome of posturing in Kenyan children with cerebral malaria.

Records of children admitted to Kilifi district hospital with cerebral malaria from January, 1999 through December, 2001 were reviewed for posturing occurring on or after admission. The clinical characteristics, features of raised intracranial pressure, number of seizures and biochemical changes in patients that developed posturing was compared to patients who did not.

Of the 417 children with complete records, 163 (39.1%) had posturing: 85 on admission and 78 after admission to hospital. Decorticate posturing occurred in 80, decerebrate in 61 and opisthotonic posturing in 22 patients. Posturing was associated with age ≥ 3 years (48.1 vs 35.8%, p = 0.01) and features of raised intracranial pressure on funduscopy (adjusted OR 2.1 95%CI 1.2–3.7, p = 0.009) but not other markers of severity of disease. Unlike decorticate posturing, decerebrate (adjusted OR 1.9 95%CI 1.0–3.5) and opisthotonic posturing (adjusted OR 2.9 95%CI 1.0–8.1) were, in addition, independently associated with recurrence of seizures after admission. Opisthotonus was also associated with severe metabolic acidosis (OR 4.2 95%CI 3.2–5.6, p < 0.001). Thirty one patients with posturing died. Of these, 19 (61.3%) had features suggestive of transtentorial herniation. Mortality and neurological deficits on discharge were greatest in those developing posturing after admission.

Abnormal motor posturing is a common feature of cerebral malaria in children. It is associated with features of raised intracranial pressure and recurrence of seizures, although intracranial hypertension may be the primary cause.

Download full-text


Available from: Richard Idro,
  • Source
    • "For some reasons, the high pressure inside the skull may cause unnatural movements and demonstrations in children infected with malaria. This is a symptom of serious damage to the brain [11]. Malaria may become an agent causing cognitive disorders, especially in children. "

    The 12th International Congress of Immunology and Allergy of Iran, Iran; 01/2014
  • Source
    • "Severe Plasmodium falciparum malaria, is characterized clinically using a series of criteria (WHO, 2000) [2], including complications such as hyperparasitaemia, metabolic acidosis, acute renal failure, severe anaemia and coma, presenting as cerebral malaria (CM). CM is a neurological syndrome comprising a potentially reversible diffuse encephalopathy, associated with retinopathy and variably with convulsions and localizing neurological signs, which are poor prognostic features [3]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Plasma angiopoietin (Ang)-2 is associated with disease severity and mortality in adults and children with falciparum malaria. However the mechanism of action of the angiopoietins in fatal malaria is unclear. This study aimed to determine whether the expression of Ang-1 and Ang-2 and their receptor Tie-2 in cerebral endothelial or parenchymal cells was specific to cerebral malaria (CM), correlated with coma or other severe clinical features, and whether plasma and CSF levels of these markers correlated with the clinical and neuropathological features of severe and fatal malaria in Vietnamese adults. Methods Immunohistochemistry was performed for Ang-1, Ang-2 and Tie-2 on post-mortem brain tissue from fatal malaria cases and controls. Quantitative ELISA for plasma and cerebrospinal fluid levels of Ang-1, Ang-2 and Tie-2 was done to compare fatal cases with surviving patients from the same study. Results Immunohistochemistry revealed significant differences in expression in endothelial and parenchymal cells compared to controls. However there was no significant difference in expression of these markers on endothelial cells, astroglial cells or neurons between CM and non-cerebral malaria cases. Immunostaining of Ang-1, Ang-2 and Tie-2 was also not associated with Plasmodium falciparum-infected erythrocyte sequestration in the brain. However Ang-1 and Ang-2 expression in neurons was significantly correlated with the incidence of microscopic haemorrhages. Plasma levels of Ang-2 and Ang-2/Ang-1 ratio were associated with the number of severe malaria complications and were significant and independent predictors of metabolic acidosis and fatal outcome. Conclusions The independent prognostic significance of Ang-2 and the Ang-2/Ang-1 ratio in severe malaria was confirmed, although immunohistochemistry in fatal cases did not reveal increased expression on brain endothelium in cerebral versus non-cerebral cases. Activation of the Ang-Tie-2 pathway in severe malaria is therefore related to acidosis, number of severity criteria and outcome, but is not a specific event in the brain during cerebral malaria.
    Malaria Journal 02/2013; 12(1):50. DOI:10.1186/1475-2875-12-50 · 3.11 Impact Factor
  • Source
    • "A large study in sub-Saharan Africa reported that almost 50% of malarial patients exhibited neurological deficits [15] encompassing a number of symptoms, including ataxia, seizures, hemiplegia, and eventually coma and death [13] [15] [16]. In addition, greater than 20% of children who survive an episode of cerebral malaria sustain persistent cognitive deficits, which can include memory impairment, visuospatial deficits, and psychiatric disorders as well as motor coordination dysfunction [2] [3] [6] [12] [20]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We have used cDNA microarrays to compare gene expression profiles in brains from normal mice to those infected with the ANKA strain of Plasmodium berghei, a model of cerebral malaria. For each of three brains in each group, we computed ratios of all quantifiable genes with a composite reference sample and then computed ratios of gene expression in infected brains compared to untreated controls. Of the almost 12,000 unigenes adequately quantified in all arrays, approximately 3% were significantly downregulated (P < 0.05, ≥ 50% fold change) and about 7% were upregulated. Upon inspection of the lists of regulated genes, we identified a high number encoding proteins of importance to normal brain function or associated with neuropathology, including genes that encode for synaptic proteins or genes involved in cerebellar function as well as genes important in certain neurological diseases such as Alzheimer's disease or autism. These results emphasize the important impact of malarial infection on gene expression in the brain and provide potential biomarkers that may provide novel therapeutic targets to ameliorate the neurological sequelae of this infection.
    Journal of neuroparasitology 10/2010; 1. DOI:10.4303/jnp/N100803
Show more