Article

Nucleotide Excision Repair, Genome Stability, and Human Disease: New Insight from Model Systems

BioMed Research International (Impact Factor: 2.88). 01/2002; DOI: 10.1155/S1110724302201023
Source: DOAJ

ABSTRACT Nucleotide excision repair (NER) is one of several DNA repair pathways that are universal throughout phylogeny. NER has a broad substrate specificity and is capable of removing several classes of lesions to the DNA, including those that accumulate upon exposure to UV radiation. The loss of this activity in NER-defective mutants gives rise to characteristic sensitivities to UV that, in humans, is manifested as a greatly elevated sensitivity to exposure to the sun. Xeroderma pigmentosum (XP), Cockayne’s syndrome (CS), and trichothiodystrophy (TTD) are three, rare, recessively inherited human diseases that are linked to these defects. Interestingly, some of the symptoms in afflicted individuals appear to be due to defects in transcription, the result of the dual functionality of several components of the NER apparatus as parts of transcription factor IIH (TFIIH). Studies with several model systems have revealed that the genetic and biochemical features of NER are extraordinarily conserved in eukaryotes. One system that has been studied very closely is the budding yeast Saccharomyces cerevisiae . While many yeast NER mutants display the expected increases in UV sensitivity and defective transcription, other interesting phenotypes have also been observed. Elevated mutation and recombination rates, as well as increased frequencies of genome rearrangement by retrotransposon movement and recombination between short genomic sequences have been documented. The potential relevance of these novel phenotypes to disease in humans is discussed.

0 Bookmarks
 · 
84 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased mitotic recombination enhances the risk for loss of heterozygosity, which contributes to the generation of cancer in humans. Defective DNA replication can result in elevated levels of recombination as well as mutagenesis and chromosome loss. In the yeast Saccharomyces cerevisiae, a null allele of the RAD27 gene, which encodes a structure-specific nuclease involved in Okazaki fragment processing, stimulates mutation and homologous recombination. Similarly, rad3-102, an allele of the gene RAD3, which encodes an essential helicase subunit of the core TFIIH transcription initiation and DNA repairosome complexes confers a hyper-recombinagenic and hypermutagenic phenotype. Combining the rad27 null allele with rad3-102 dramatically stimulated interhomolog recombination and chromosome loss but did not affect unequal sister-chromatid recombination, direct-repeat recombination, or mutation. Interestingly, the percentage of cells with Rad52-YFP foci also increased in the double-mutant haploids, suggesting that rad3-102 may increase lesions that elicit a response by the recombination machinery or, alternatively, stabilize recombinagenic lesions generated by DNA replication failure. This net increase in lesions led to a synthetic growth defect in haploids that is relieved in diploids, consistent with rad3-102 stimulating the generation and rescue of collapsed replication forks by recombination between homologs.
    Genetics 08/2007; 176(3):1391-402. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription and DNA repair factor TFIIH is composed of 10 subunits. Mutations in the XPB, XPD, and p8 subunits are genetically linked to human diseases, including cancer. However, no reports of mutations in other TFIIH subunits have been reported in higher eukaryotes. Here, we analyze at genetic, molecular, and biochemical levels the Drosophila melanogaster p52 (DMP52) subunit of TFIIH. We found that DMP52 is encoded by the gene marionette in Drosophila and that a defective DMP52 produces UV light-sensitive flies and specific phenotypes during development: organisms are smaller than their wild-type siblings and present tumors and chromosomal instability. The human homologue of DMP52 partially rescues some of these phenotypes. Some of the defects observed in the fly caused by mutations in DMP52 generate trichothiodystrophy and cancer-like phenotypes. Biochemical analysis of DMP52 point mutations introduced in human p52 at positions homologous to those of defects in DMP52 destabilize the interaction between p52 and XPB, another TFIIH subunit, thus compromising the assembly of the complex. This study significantly extends the role of p52 in regulating XPB ATPase activity and, consequently, both its transcriptional and nucleotide excision repair functions.
    Molecular and Cellular Biology 06/2007; 27(10):3640-50. · 5.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Excision repair cross-complementation group 4 gene (ERCC4/XPF) plays an important role in nucleotide excision repair and participates in removal of DNA interstrand cross-links and DNA double-strand breaks. Single nucleotide polymorphisms (SNPs) in ERCC4 may impact repair capacity and affect cancer susceptibility. In this case-control study, we evaluated associations of four selected potentially functional SNPs in ERCC4 with risk of squamous cell carcinoma of the head and neck (SCCHN) in 1,040 non-Hispanic white patients with SCCHN and 1,046 cancer-free matched controls. We found that the variant GG genotype of rs2276466 was significantly associated with a decreased risk of SCCHN (OR = 0.69, 95% CI 0.50-0.96), and that the variant TT genotype of rs3136038 showed a borderline significant decreased risk with SCCHN (OR = 0.76, 95% CI: 0.58-1.01) in the recessive model. Such protective effects were more evident in oropharyngeal cancer (OR = 0.61, 95% CI: 0.40-0.92 for rs2276466; OR = 0.69, 95% CI: 0.48-0.98 for rs3136038). No significant associations were found for the other two SNPs (rs1800067 and rs1799798). In addition, individuals with the rs2276466 GG or with the rs3136038 TT genotypes had higher levels of ERCC4 mRNA expression than those with the corresponding wild-type genotypes in 90 Epstein-Barr virus-transformed lymphoblastoid cell lines derived from Caucasians. These results suggest that these two SNPs (rs2276466 and rs3136038) in ERCC4 may be functional and contribute to SCCHN susceptibility. However, our findings need to be replicated in further large epidemiological and functional studies.
    PLoS ONE 01/2012; 7(7):e41853. · 3.53 Impact Factor

Full-text (2 Sources)

View
66 Downloads
Available from
May 20, 2014