Filarial Excretory-Secretory Products Induce Human Monocytes to Produce Lymphangiogenic Mediators

University Clinic Bonn, Germany
PLoS Neglected Tropical Diseases (Impact Factor: 4.49). 07/2014; 8(7):e2893. DOI: 10.1371/journal.pntd.0002893
Source: PubMed

ABSTRACT The nematodes Wuchereria bancrofti and Brugia spp. infect over 120 million people worldwide, causing lymphedema, elephantiasis and hydrocele, collectively known as lymphatic filariasis. Most infected individuals appear to be asymptomatic, but many exhibit sub-clinical manifestations including the lymphangiectasia that likely contributes to the development of lymphedema and elephantiasis. As adult worm excretory-secretory products (ES) do not directly activate lymphatic endothelial cells (LEC), we investigated the role of monocyte/macrophage-derived soluble factors in the development of filarial lymphatic pathology. We analyzed the production of IL-8, IL-6 and VEGF-A by peripheral blood mononuclear cells (PBMC) from naïve donors following stimulation with filarial ES products. ES-stimulated PBMCs produced significantly more IL-8, IL-6 and VEGF-A compared to cells cultured in medium alone; CD14+ monocytes appear to be the primary producers of IL-8 and VEGF-A, but not IL-6. Furthermore, IL-8, IL-6 and VEGF-A induced in vitro tubule formation in LEC Matrigel cultures. Matrigel plugs supplemented with IL-8, IL-6, VEGF-A, or with supernatants from ES-stimulated PBMCs and implanted in vivo stimulated lymphangiogenesis. Collectively, these data support the hypothesis that monocytes/macrophages exposed to filarial ES products may modulate lymphatic function through the secretion of soluble factors that stimulate the vessel growth associated with the pathogenesis of filarial disease.

Download full-text


Available from: Patrick J Lammie, Aug 21, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenesis is a critical process for growth of new capillary blood vessels from preexisting capillaries and postcapillary venules, both in physiological and pathological conditions. Endothelial cell proliferation is a major component of angiogenesis and it is regulated by several growth factors. It has been previously shown that the human hemopoietic growth factor IL-3 (hIL-3), predominantly produced by activated T lymphocytes, stimulates both endothelial cell proliferation and functional activation. In the present study, we report that hIL-3 is able to induce directional migration and tube formation of HUVEC. The in vivo neoangiogenetic effect of hIL-3 was also demonstrated in a murine model in which Matrigel was used for the delivery of the cytokine, suggesting a role of hIL-3 in sustaining neoangiogenesis. Challenge of HUVEC with hIL-3 lead to the synthesis of platelet-activating factor (PAF), which was found to act as secondary mediator for hIL-3-mediated endothelial cell motility but not for endothelial cell proliferation. Consistent with the role of STAT5 proteins in regulating IL-3-mediated mitogenic signals, we herein report that, in hIL-3-stimulated HUVEC, the recruitment of STAT5A and STAT5B, by the beta common (betac) subunit of the IL-3R, was not affected by PAF receptor blockade.
    The Journal of Immunology 09/1999; 163(4):2151-9. · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lymphangiogenesis, an important initial step in tumor metastasis and transplant sensitization, is mediated by the action of VEGF-C and -D on VEGFR3. In contrast, VEGF-A binds VEGFR1 and VEGFR2 and is an essential hemangiogenic factor. We re-evaluated the potential role of VEGF-A in lymphangiogenesis using a novel model in which both lymphangiogenesis and hemangiogenesis are induced in the normally avascular cornea. Administration of VEGF Trap, a receptor-based fusion protein that binds and neutralizes VEGF-A but not VEGF-C or -D, completely inhibited both hemangiogenesis and the outgrowth of LYVE-1(+) lymphatic vessels following injury. Furthermore, both lymphangiogenesis and hemangiogenesis were significantly reduced in mice transgenic for VEGF-A(164/164) or VEGF-A(188/188) (each of which expresses only one of the three principle VEGF-A isoforms). Because VEGF-A is chemotactic for macrophages and we demonstrate here that macrophages in inflamed corneas release lymphangiogenic VEGF-C/VEGF-D, we evaluated the possibility that macrophage recruitment plays a role in VEGF-A-mediated lymphangiogenesis. Either systemic depletion of all bone marrow-derived cells (by irradiation) or local depletion of macrophages in the cornea (using clodronate liposomes) prior to injury significantly inhibited both hemangiogenesis and lymphangiogenesis. We conclude that VEGF-A recruitment of monocytes/macrophages plays a crucial role in inducing inflammatory neovascularization by supplying/amplifying signals essential for pathological hemangiogenesis and lymphangiogenesis.
    Journal of Clinical Investigation 05/2004; 113(7):1040-50. DOI:10.1172/JCI20465 · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The blood vascular and the lymphatic system play complementary roles in tissue perfusion and fluid reabsorption. Despite its critical role in mediating tissue fluid homeostasis, intestinal lipid absorption, and the immune response, the lymphatic system has not received as much attention as the blood vascular system, largely due to a lack of lymphatic-specific markers and to the dearth of knowledge about the molecular regulation of lymphatic development and function. A series of recent landmark studies now significantly has advanced our understanding of the lymphatic system. Based upon the discovery and characterization of lymphatic-specific growth factors, receptors, and transcriptional regulators, the mystery of lymphatic vascular system development begins to be unraveled. The successful isolation and cultivation of blood vascular and lymphatic endothelial cells has enabled comparative molecular and cellular analyses of these two genetically and developmentally closely related cell lineages. Moreover, studies of several genetic mouse models have set the framework for a new molecular model of embryonic lymphatic vascular development and have identified molecular pathways whose mutational inactivation leads to human diseases associated with lymphedema. Although these rapid advances already have led to development of the first lymphatic-targeted molecular therapies, there still remain many unanswered questions regarding almost every aspect of lymphatic vascular biology, making the lymphatic system a highly exciting and rewarding field of study.
    Developmental Dynamics 11/2004; 231(3):462-73. DOI:10.1002/dvdy.20179 · 2.67 Impact Factor