Filarial Excretory-Secretory Products Induce Human Monocytes to Produce Lymphangiogenic Mediators

University Clinic Bonn, Germany
PLoS Neglected Tropical Diseases (Impact Factor: 4.45). 07/2014; 8(7):e2893. DOI: 10.1371/journal.pntd.0002893
Source: PubMed


The nematodes Wuchereria bancrofti and Brugia spp. infect over 120 million people worldwide, causing lymphedema, elephantiasis and hydrocele, collectively known as lymphatic filariasis. Most infected individuals appear to be asymptomatic, but many exhibit sub-clinical manifestations including the lymphangiectasia that likely contributes to the development of lymphedema and elephantiasis. As adult worm excretory-secretory products (ES) do not directly activate lymphatic endothelial cells (LEC), we investigated the role of monocyte/macrophage-derived soluble factors in the development of filarial lymphatic pathology. We analyzed the production of IL-8, IL-6 and VEGF-A by peripheral blood mononuclear cells (PBMC) from naïve donors following stimulation with filarial ES products. ES-stimulated PBMCs produced significantly more IL-8, IL-6 and VEGF-A compared to cells cultured in medium alone; CD14+ monocytes appear to be the primary producers of IL-8 and VEGF-A, but not IL-6. Furthermore, IL-8, IL-6 and VEGF-A induced in vitro tubule formation in LEC Matrigel cultures. Matrigel plugs supplemented with IL-8, IL-6, VEGF-A, or with supernatants from ES-stimulated PBMCs and implanted in vivo stimulated lymphangiogenesis. Collectively, these data support the hypothesis that monocytes/macrophages exposed to filarial ES products may modulate lymphatic function through the secretion of soluble factors that stimulate the vessel growth associated with the pathogenesis of filarial disease.

Download full-text


Available from: Patrick J Lammie, Aug 21, 2014
36 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunomodulatory components of helminths (ICH) offer great promise as an entirely new class of biologics for the treatment of inflammatory diseases. Here we discuss the emerging themes in helminth-driven immunomodulation in the context of therapeutic drug discovery. We broadly define the approaches that are currently applied by researchers to identify these helminth molecules, highlighting key areas of potential exploitation that have been mostly neglected thus far, notably small molecules. Finally, we propose that the investigation of immunomodulatory compounds will enable the translation of current and future research efforts into potential treatments for autoimmune and allergic diseases, while at the same time yielding new insights into the molecular interface of host-parasite biology. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Parasite Immunology 04/2015; 37(6). DOI:10.1111/pim.12192 · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lymphatic filariasis (LF) is a socioeconomically devastating mosquito-borne Neglected Tropical Disease caused by parasitic filarial nematodes. The interaction between the parasite and host, both mosquito and human, during infection, development and persistence is dynamic and delicately balanced. Manipulation of this interface to the detriment of the parasite is a promising potential avenue to develop disease therapies but is prevented by our very limited understanding of the host-parasite relationship. Exosomes are bioactive small vesicles (30–120 nm) secreted by a wide range of cell types and involved in a wide range of physiological processes. Here, we report the identification and partial characterization of exosome-like vesicles (ELVs) released from the infective L3 stage of the human filarial parasite Brugia malayi. Exosome-like vesicles were isolated from parasites in culture media and electron microscopy and nanoparticle tracking analysis were used to confirm that vesi-cles produced by juvenile B. malayi are exosome-like based on size and morphology. We show that loss of parasite viability correlates with a time-dependent decay in vesicle size specificity and rate of release. The protein cargo of these vesicles is shown to include common exosomal protein markers and putative effector proteins. These Brugia-derived vesi-cles contain small RNA species that include microRNAs with host homology, suggesting a potential role in host manipulation. Confocal microscopy shows J774A.1, a murine macro-phage cell line, internalize purified ELVs, and we demonstrate that these ELVs effectively stimulate a classically activated macrophage phenotype in J774A.1. To our knowledge, this is the first report of exosome-like vesicle release by a human parasitic nematode and our data suggest a novel mechanism by which human parasitic nematodes may actively direct the host responses to infection. Further interrogation of the makeup and function of these bioactive vesicles could seed new therapeutic strategies and unearth stage-specific diagnostic biomarkers.
    PLoS Neglected Tropical Diseases 10/2015; 9(9):e0004069. DOI:10.1371/journal.pntd.0004069 · 4.45 Impact Factor