Article

Experience-induced Malleability in Neural Encoding of Pitch, Timbre, and Timing: Implications for Language and Music

Auditory Neuroscience Lab, Department of Communication Sciences, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA.
Annals of the New York Academy of Sciences (Impact Factor: 4.38). 01/2009; 1169(1). DOI: 10.1111/j.1749-6632.2009.04549.x
Source: PubMed

ABSTRACT Speech and music are highly complex signals that have many shared acoustic features. Pitch, Timbre, and Timing can be used as overarching perceptual categories for describing these shared properties. The acoustic cues contributing to these percepts also have distinct subcortical representations which can be selectively enhanced or degraded in different populations. Musically trained subjects are found to have enhanced subcortical representations of pitch, timbre, and timing. The effects of musical experience on subcortical auditory processing are pervasive and extend beyond music to the domains of language and emotion. The sensory malleability of the neural encoding of pitch, timbre, and timing can be affected by lifelong experience and short-term training. This conceptual framework and supporting data can be applied to consider sensory learning of speech and music through a hearing aid or cochlear implant.

1 Bookmark
 · 
15 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study investigated whether the frequency-following response (FFR) of the auditory brainstem can represent individual frequency-discrimination ability.
    BioMedical Engineering OnLine 08/2014; 13(1):114. · 1.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A same-different task was used to test the hypothesis that musical expertise improves the discrimination of tonal and segmental (consonant, vowel) variations in a tone language, Mandarin Chinese. Two four-word sequences (prime and target) were presented to French musicians and nonmusicians unfamiliar with Mandarin, and event-related brain potentials were recorded. Musicians detected both tonal and segmental variations more accurately than nonmusicians. Moreover, tonal variations were associated with higher error rate than segmental variations and elicited an increased N2/N3 component that developed 100 msec earlier in musicians than in nonmusicians. Finally, musicians also showed enhanced P3b components to both tonal and segmental variations. These results clearly show that musical expertise influenced the perceptual processing as well as the categorization of linguistic contrasts in a foreign language. They show positive music-to-language transfer effects and open new perspectives for the learning of tone languages.
    Journal of Cognitive Neuroscience 10/2010; 23(10):2701-15. · 4.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transformation of acoustic signals into abstract perceptual representations is the essence of the efficient and goal-directed neural processing of sounds in complex natural environments. While the human and animal auditory system is perfectly equipped to process the spectrotemporal sound features, adequate sound identification and categorization require neural sound representations that are invariant to irrelevant stimulus parameters. Crucially, what is relevant and irrelevant is not necessarily intrinsic to the physical stimulus structure but needs to be learned over time, often through integration of information from other senses. This review discusses the main principles underlying categorical sound perception with a special focus on the role of learning and neural plasticity. We examine the role of different neural structures along the auditory processing pathway in the formation of abstract sound representations with respect to hierarchical as well as dynamic and distributed processing models. Whereas most fMRI studies on categorical sound processing employed speech sounds, the emphasis of the current review lies on the contribution of empirical studies using natural or artificial sounds that enable separating acoustic and perceptual processing levels and avoid interference with existing category representations. Finally, we discuss the opportunities of modern analyses techniques such as multivariate pattern analysis (MVPA) in studying categorical sound representations. With their increased sensitivity to distributed activation changes-even in absence of changes in overall signal level-these analyses techniques provide a promising tool to reveal the neural underpinnings of perceptually invariant sound representations.
    Frontiers in neuroscience. 01/2014; 8:132.

Full-text

View
0 Downloads
Available from