Article

Comparison of inert supports in laser desorption/ionization mass spectrometry of peptides: pencil lead, porous silica gel, DIOS-chip and NALDI target.

Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Universités Montpellier 1 et 2, Bâtiment Chimie (17), Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
Rapid Communications in Mass Spectrometry (Impact Factor: 2.51). 09/2009; 23(15):2371-9. DOI: 10.1002/rcm.4158
Source: PubMed

ABSTRACT In the search for alternative inert surfaces replacing silicon chips in Desorption/Ionization On porous Silicon (DIOS)-like mass spectrometry analyses, nanostructured silicon-based NALDI chips were evaluated in Laser Desorption/Ionization (LDI) of peptides. Comparisons were made using commercially available DIOS chips (MassPREP-DIOS-target), amorphous carbon powder from lead pencil and porous silica gel used for chromatographic purposes as reference supports. A set of synthetic model peptides presenting variable amino acid sequences of various lengths was analyzed under all conditions. The LDI responses of the four 'matrix-free' techniques were compared, especially in terms of peptide detection sensitivity and overall experiment robustness.

0 Bookmarks
 · 
63 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabolomics, also referred to in the literature as metabonomics, is a relatively new systems biology tool for drug discovery and development and is increasingly being used to obtain a detailed picture of a drug's effect on the body. Metabolomics is the qualitative assessment and relative or absolute quantitative measurement of the endogenous metabolome, defined as the complement of all native small molecules (metabolites less than 1,500 Da). A metabolomics study frequently involves the comparative analysis of sample sets from a normal state and a perturbed state, where the perturbation can be of any nature, such as genetic knockout, administration of a drug, or change in diet or lifestyle. Advances in mass spectrometry (MS) technologies including direct introduction or in-line chromatographic separation modes, ionization techniques, mass analyzers, and detection methods have provided powerful tools to assess the molecular changes in the metabolome. This review focuses on advances in MS pertaining to the analytical data generation for the main metabolomics methods, namely, fingerprinting, nontargeted, and targeted approaches, as they are applied to pharmaceutical drug discovery and development.
    Analytical and Bioanalytical Chemistry 03/2011; 399(8):2645-53. · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although laser desorption mass spectrometry was introduced in the 1960s, the potential of laser mass spectrometry was not realised until the introduction of matrix-assisted laser desorption/ionisation (MALDI) in the 1980s. The technique relies on light-absorbing compounds called matrices that are co-crystallised with the analyte to achieve high ionisation and desorption efficiencies. MALDI offers a lot of advantages and is an indispensable tool in macromolecule analysis. However, the presence of the matrix also produces a high chemical background in the region below m/z 700 in the mass spectrum. Surface-assisted laser desorption/ionisation (SALDI) substitutes the chemical matrix of MALDI for an active surface, which means that matrix interference can be eliminated. SALDI mass spectrometry has evolved in recent years into a technique with great potential to provide insight into many of the challenges faced in modern research, including the growing interest in "omics" and the demands of pharmaceutical science. A great variety of materials have been reported to work in SALDI. Examples include a number of nanomaterials and surfaces. The unique properties of nanomaterials greatly facilitate analyte desorption and ionisation. This article reviews recent advances made in relation to carbon- and semiconductor-based SALDI strategies. Examples of their environmental, chemical and biomedical applications are discussed with the aim of highlighting progression in the field and the robustness of the technique, as well as to evaluate the strengths and weaknesses of individual approaches. In addition, this article describes the physical and chemical processes involved in SALDI and explains how the unique physical and electronic properties of nanostructured surfaces allow them to substitute for the matrix in energy transfer processes.
    Analytical and Bioanalytical Chemistry 03/2011; 399(8):2597-622. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanostructure-assisted laser desorption/ionization time-of-flight mass spectrometry (NALDI-TOFMS) has been developed recently as a matrix-free/surface-assisted alternative to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The NALDI surface of silicon nanowires is already very effective for the analysis of small to medium sized, polar organic molecules in positive ion mode. The current study examined this technology for the analysis of several nonpolar organic, organometallic, and ionic compounds in positive ion mode, as well as a fluorinated compound and various acids in negative ion mode. NALDI data are compared and contrasted with MALDI data for the same compounds, and the higher sensitivity of NALDI is highlighted by the successful characterization of two porphyrins for a sample amount of 10 amol per spot.
    Journal of the American Society for Mass Spectrometry 04/2010; 21(7):1256-9. · 3.59 Impact Factor