Mouse models of fragile X-associated tremor ataxia

Department of Neurological Surgery and the Neurotherapeutics Research Institute, University of California Davis, Davis, CA 95616, USA.
Journal of Investigative Medicine (Impact Factor: 1.69). 08/2009; 57(8):837-41.
Source: PubMed


To describe the development of mouse models of fragile X-associated tremor/ataxia (FXTAS) and the behavioral, histological and molecular characteristics of these mice.
This paper compares the pathophysiology and neuropsychological features of FXTAS in humans to the major mouse models of FXTAS. Specifically, the development of a transgenic mouse line carrying an expanded CGG trinucleotide repeat in the 5'-untranslated region (5'-UTR) of the Fmr1 gene is described along with a description of the characteristic intranuclear ubiquitin-positive inclusions and the behavioral sequella observed in these mice.
CGG KI mice model many of the important features of FXTAS, although some aspects are not well modeled in mice. Aspects of FXTAS that are modeled well include elevated levels of Fmr1 mRNA, reduced levels of Fmrp, the presence of intranuclear inclusions that develop with age and show similar distributions within neurons, and neuropsychological and cognitive deficits, including poor motor function, impaired memory and evidence of increased anxiety. Features of FXTAS that are not well modeled in these mice include intentional tremors that are observed in some FXTAS patients but have not been reported in CGG KI mice. In addition, although intranuclear inclusions in astrocytes are very prominent in FXTAS, there are relatively few observed in CGG KI mice. A number of additional features of FXTAS have not been systematically examined in mouse models yet, including white matter disease, hyperintensities in T2-weighted magnetic resonance imaging, and brain atrophy, although these are currently under investigation in our laboratories.
The available mouse model has provided valuable insights into the molecular biology and pathophysiology of FXTAS and will be particularly useful for developing and testing new therapeutic treatments in the future.

6 Reads
  • Source
    • "The brains of these two mouse lines show small (10% to 30%) to moderate (>50%) reductions in FMRP, respectively, despite the fact that 2- to 3-fold elevated levels of Fmr1 mRNA are found [23,26,28,71-73]. These results parallel to a great extent what is found in some human premutation carriers and in patients with FXTAS as outlined in Table 1[21]. The linear correlation between FMR1 mRNA levels and the repeat size in FPM and in patients with FXTAS [72,74] has also been found in brain tissue from the CGGdut KI mouse [73]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Carriers of the fragile X premutation (FPM) have CGG trinucleotide repeat expansions of between 55 and 200 in the 5'-UTR of FMR1, compared to a CGG repeat length of between 5 and 54 for the general population. Carriers were once thought to be without symptoms, but it is now recognized that they can develop a variety of early neurological symptoms as well as being at risk for developing the late onset neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Several mouse models have contributed to our understanding of FPM and FXTAS, and findings from studies using these models are summarized here. This review also discusses how this information is improving our understanding of the molecular and cellular abnormalities that contribute to neurobehavioral features seen in some FPM carriers and in patients with FXTAS. Mouse models show much of the pathology seen in FPM carriers and in individuals with FXTAS, including the presence of elevated levels of Fmr1 mRNA, decreased levels of fragile X mental retardation protein, and ubiquitin-positive intranuclear inclusions. Abnormalities in dendritic spine morphology in several brain regions are associated with neurocognitive deficits in spatial and temporal memory processes, impaired motor performance, and altered anxiety. In vitro studies have identified altered dendritic and synaptic architecture associated with abnormal Ca(2+) dynamics and electrical network activity. FPM mice have been particularly useful in understanding the roles of Fmr1 mRNA, fragile X mental retardation protein, and translation of a potentially toxic polyglycine peptide in pathology. Finally, the potential for using these and emerging mouse models for preclinical development of therapies to improve neurological function in FXTAS is considered.
    Journal of Neurodevelopmental Disorders 07/2014; 6(1):25. DOI:10.1186/1866-1955-6-25 · 3.27 Impact Factor
  • Source
    • "In this current study we sought to determine whether cytokine production in healthy human female premutation carriers without evidence for preexisting immune disorders or FXTAS was altered at the cellular level. In addition, we investigated whether parallel immune findings were present in a mouse model of the fragile X premutation [19]. We hypothesize that carriers of premutation alleles will display immune profiles of dysregulation in dynamic cytokine production and altered cellular activation phenotypes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased rates of autoinflammatory and autoimmune disorders have been observed in female premutation carriers of CGG repeat expansion alleles of between 55-200 repeats in the fragile X mental retardation 1 (FMR1) gene. To determine whether an abnormal immune profile was present at a cellular level that may predispose female carriers to autoinflammatory conditions, we investigated dynamic cytokine production following stimulation of blood cells. In addition, splenocyte responses were examined in an FMR1 CGG knock-in mouse model of the fragile X premutation. Human monocyte and peripheral blood leukocytes (PBLs) were isolated from the blood of 36 female FMR1 premutation carriers and 15 age-matched controls. Cells were cultured with media alone, LPS or PHA. In the animal model, splenocytes were isolated from 32 CGG knock-in mice and 32 wild type littermates. Splenocytes were cultured with media alone or LPS or PMA/Ionomycin. Concentrations of cytokines (GM-CSF, IL-1β, IL-6, IL-10, IL-13, IL-17, IFNγ, TNFα, and MCP-1) were determined from the supernatants of cellular cultures via Luminex multiplex assay. Additionally, phenotypic cellular markers were assessed on cells isolated from human subjects via flow cytometry. We found decreases in cytokine production in human premutation carriers as well as in the FMR1 knock-in mice when compared with controls. Levels of cytokines were found to be associated with CGG repeat length in both human and mouse. Furthermore, T cells from human premutation carriers showed decreases in cell surface markers of activation when compared with controls. In this study, FMR1 CGG repeat expansions are associated with decreased immune responses and immune dysregulation in both humans and mice. Deficits in immune responses in female premutation carriers may lead to increased susceptibility to autoimmunity and further research is warranted to determine the link between FMR1 CGG repeat lengths and onset of autoinflammatory conditions.
    PLoS ONE 04/2014; 9(4):e94475. DOI:10.1371/journal.pone.0094475 · 3.23 Impact Factor
  • Source
    • "The neuropathological signs of FXTAS include white matter disease and Purkinje cell loss in the cerebellum. Further, the presence of eosinophilic intranuclear inclusions throughout the brain [8,9], in testis [10] and in other organs has been reported in both humans [11] and in the CGG KI mouse model of PM [12]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lack of the fragile X mental retardation protein leads to Fragile X syndrome (FXS) while increased levels of FMR1 mRNA, as those observed in premutation carriers can lead to Fragile X- associated tremor ataxia syndrome (FXTAS). Until recently, FXTAS had been observed only in carriers of an FMR1 premutation (55–200 CGG repeats); however the disorder has now been described in individuals carriers of an intermediate allele (45–54 CGG repeats) as well as in a subject with a full mutation with mosaicism. Here, we report on molecular and clinical data of a male FMR1 mosaic individual with full and premutation alleles. Molecular analysis of FMR1 and FMRP expression in this subject is consistent with a FXS phenotype. We observed reduced expression of FMRP in both peripheral blood and brain leading to the FXS diagnosis. In addition, a dramatic 90% depletion of both FMR1 mRNA and FMRP levels was observed in the blood, as normally observed in FXS cases, and an even greater depletion in the brain. A clinical report of this patient, at age 71, described neurodegenerative signs of parkinsonism that were likely, in retrospect, part of a FXTAS scenario as post-mortem examination shows the presence of intranuclear inclusions, the hallmark pathology of FXTAS. The findings presented in this study indicate co-morbidity for both FXS and FXTAS in this individual carrying both full and premutation FMR1 alleles. In addition, based on symptoms and pathological and molecular evidence, this report suggests the need to redefine the diagnostic criteria of FXTAS.
    Translational Neurodegeneration 05/2013; 2(1):10. DOI:10.1186/2047-9158-2-10
Show more


6 Reads
Available from