Radio imaging of the very-high-energy gamma-ray emission region in the central engine of a radio galaxy.

Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645, USA.
Science (Impact Factor: 31.2). 08/2009; 325(5939):444-8. DOI: 10.1126/science.1175406
Source: PubMed

ABSTRACT The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The MAGIC data center has recently introduced a new computing service, which is available to the whole collaboration. This service will be complemented with DataCooker, an analysis system currently in development. This system implements the MAGIC data analysis chain and integrates it in the data center infrastructure. DataCooker is designed to provide an easy access to the computing service without the need to know its details or deal with the complexities of its use.
    Journal of Physics Conference Series 12/2011; 331(3):032040.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cosmic explosions dissipate energy into their surroundings on a very wide range of time scales: producing shock waves and associated particle acceleration. The historical culprits for the acceleration of the bulk of Galactic cosmic rays are supernova remnants: explosions on approximately 10(4) year time scales. Increasingly, however, time-variable emission points to rapid and efficient particle acceleration in a range of different astrophysical systems. Gamma-ray bursts have the shortest time scales, with inferred bulk Lorentz factors of approximately 1000 and photons emitted beyond 100 GeV, but active galaxies, pulsar wind nebulae and colliding stellar winds are all now associated with time-variable emission at approximately teraelectron volt energies. Cosmic photons and neutrinos at these energies offer a powerful probe of the underlying physical mechanisms of cosmic explosions, and a tool for exploring fundamental physics with these systems. Here, we discuss the motivations for high-energy observations of transients, the current experimental situation, and the prospects for the next decade, with particular reference to the major next-generation high-energy observatory, the Cherenkov Telescope Array.
    Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences 06/2013; 371(1992):20120279. · 2.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancers of the esophagus, stomach and colon contribute to a major health burden worldwide and over 20% of all cancer deaths. Biomarkers that should indicate pathogenic process and are measureable in an objective manner for these tumors are rare and not established in the clinical setting. In general biomarkers can be very useful for cancer management as they can improve clinical decision-making regarding diagnosis, surveillance, and therapy. Biomarkers can be different types of molecular entities (such as DNA, RNA or proteins), which can be detected, in different tissues or body fluids. However, more important is the type of biomarker itself, which allows diagnostic, prognostic or predictive analyses for different clinical problems. This review aims to systematically summarize the recent findings of genetic and epigenetic markers for gastrointestinal tumors within the last decade. While many biomarkers seem to be very promising, especially if used as panels, further development is urgently needed to address practical considerations of biomarkers in cancer treatment.
    Pharmacology [?] Therapeutics 06/2013; · 7.79 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014