Article

Dissecting Activation of the PAK1 Kinase at Protrusions in Living Cells

Institut Curie, Centre de Recherche, Paris, France.
Journal of Biological Chemistry (Impact Factor: 4.6). 08/2009; 284(36):24133-43. DOI: 10.1074/jbc.M109.015271
Source: PubMed

ABSTRACT The p21-activated kinase (PAK) 1 kinase, an effector of the Cdc42 and Rac1 GTPases, regulates cell protrusions and motility by controlling actin and adhesion dynamics. Its deregulation has been linked to human cancer. We show here that activation of PAK1 is necessary for protrusive activity during cell spreading. To investigate PAK1 activation dynamics at live protrusions, we developed a conformational biosensor, based on fluorescence resonance energy transfer. This novel PAK1 biosensor allowed the spatiotemporal visualization of PAK1 activation during spreading of COS-7 cells and during motility of normal rat kidney cells. By using this imaging approach in COS-7 cells, the following new insights on PAK1 regulation were unveiled. First, PAK1 acquires an intermediate semi-open conformational state upon recruitment to the plasma membrane. This semi-open PAK1 species is selectively autophosphorylated on serines in the N-terminal regulatory region but not on the critical threonine 423 in the catalytic site. Second, this intermediate PAK1 state is hypersensitive to stimulation by Cdc42 and Rac1. Third, interaction with PIX proteins contributes to PAK1 stimulation at membrane protrusions, in a GTPase-independent way. Finally, trans-phosphorylation events occur between PAK1 molecules at the membrane possibly playing a relevant role for its activation. This study leads to a model for the complex and accurate regulation of PAK1 kinase in vivo at cell protrusions.

0 Followers
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The HIV-1 Nef protein brings about increased T cell activity and viral titers through mechanisms that are poorly understood. Nef activity has been described as an enhancer, but not an inducer, of certain signaling pathways that lead to T cell activation and viral production, particularly from resting T cells. The protein has also been found to associate with and promote autophosphorylation of a serine kinase, Pak2, but the Nef-associated kinase level is very low and difficult to study. Here we demonstrate that Nef expression mediates phosphorylation of Mek1 serine298 in T cell lines as well as primary human T cells, thus directly affecting the Erk cascade. This phosphorylation is through a Pak and Rac activity. We also find that Pak2 in Nef expressing cells is phosphorylated on serine192/197, the first biochemical description of the Nef-mediated activation state for this kinase.
    Current HIV research 06/2013; DOI:10.2174/1570162X113119990039 · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite efforts to discover the cellular pathways regulating breast cancer metastasis, little is known as to how prolactin (PRL) cooperates with extracellular environment and cytoskeletal proteins to regulate breast cancer cell motility and invasion. We implicated serine-threonine kinase p21-activated kinase 1 (PAK1) as a novel target for PRL-activated Janus-kinase 2 (JAK2). JAK2-dependent PAK1 tyrosyl phosphorylation plays a critical role in regulation of both PAK1 kinase activity and scaffolding properties of PAK1. Tyrosyl phosphorylated PAK1 facilitates PRL-dependent motility via at least two mechanisms: formation of paxillin/GIT1/βPIX/pTyr-PAK1 complexes resulting in increased adhesion turnover and phosphorylation of actin-binding protein filamin A. Increased adhesion turnover is the basis for cell migration and phosphorylated filamin A stimulates the kinase activity of PAK1 and increases actin-regulating activity to facilitate cell motility. Tyrosyl phosphorylated PAK1 also stimulates invasion of breast cancer cells in response to PRL and three-dimensional (3D) collagen IV via transcription and secretion of MMP-1 and MMP-3 in a MAPK-dependent manner. These data illustrate the complex interaction between PRL and the cell microenvironment in breast cancer cells and suggest a pivotal role for PRL/PAK1 signaling in breast cancer metastasis.
    Advances in Experimental Medicine and Biology 01/2015; 846:97-137. DOI:10.1007/978-3-319-12114-7_5 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, recombinant hemagglutinin protein (rH1N1HA) of Pandemic influenza virus and polyclonal antibodies against it for biosensor applications have been characterized. For rapid and high sensitive detection of H1N1 virus or its antibodies, PCR-free and label free detection method based on a surface plasmon resonance technique has been proposed. The glycosylated H1N1HA protein was expressed in yeast and the authenticity of the expressed protein was confirmed by Western blotting. Rabbit polyclonal antibodies developed against rH1N1HA protein were evaluated for their ability to neutralize H1N1 virus through plaque reduction neutralization test and indirect ELISA. Affinity purified anti-H1N1HA IgG were characterized further for their specificity, affinity of interaction, the association and dissociation rates at which they interact through surface plasmon resonance technique. The equilibrium constant and maximum binding capacity of analyte was found to be 49.7 nM and 47.28m°, respectively. The assay could detect a lowest IgG of 0.5 ng on a rH1N1HA coated chip. Combined with the high sensitivity of surface plasmon resonance technique and specificity of the reagents, it is possible to develop a rapid detection assay for monitoring influenza infections. J. Med. Virol. © 2013 Wiley Periodicals, Inc.
    Journal of Medical Virology 03/2014; 86(3). DOI:10.1002/jmv.23753 · 2.22 Impact Factor