White matter atlases based on diffusion tensor imaging.

Division of NMR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
Current opinion in neurology (Impact Factor: 5.73). 07/2009; 22(4):362-9. DOI: 10.1097/WCO.0b013e32832d954b
Source: PubMed

ABSTRACT Diffusion tensor imaging (DTI) has a unique capability to delineate axonal tracts within the white matter, which has not been possible with previous noninvasive imaging techniques. In the past 10 years, we have witnessed a large increase in the use of DTI-based studies and a score of new anatomical knowledge and image analysis tools have been introduced in recent years. This review will provide an overview of the recent advancements in DTI-based studies and new image analysis tools.
DTI provided new dimensions for the characterization of white matter anatomy. This characterization of the white matter can be roughly divided into two categories. First, the white matter can be parcellated into constituent white matter tracts, based on pixel-by-pixel orientation and anisotropy information. Second, the DTI information can be extrapolated to obtain three-dimensional connectivity information. Based on these capabilities of DTI, many new image analysis tools are being developed to investigate the status of the white matter.
In the past, the white matter has often been treated as one compartment. With DTI and recently developed analysis tools, we can investigate the status of intra-white matter structures and deepen our understanding of white matter structures and their abnormalities under pathological conditions.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with concussion often present with temporary disturbance of consciousness. The microstructural and functional changes in the brain associated with concussion, as well as the relationship with transient cognitive disorders, are currently unclear. In the present study, a rabbit model of simple concussion was established. Magnetic resonance-diffusion tensor imaging results revealed that the corona radiata and midbrain exhibited significantly decreased fractional anisotropy values in the neural pathways associated with memory and the reticular formation. In addition, the apparent diffusion coefficient values were significantly increased following injury compared with those before injury. Following a 1-hour period of quiet rest, the fractional anisotropy values significantly increased, and apparent diffusion coefficient values significantly decreased, returning to normal pre-injury levels. In contrast, the fractional anisotropy values and apparent diffusion coefficient values in the corpus callosum, thalamus and hippocampus showed no statistical significant alterations following injury. These findings indicate that the neural pathways associated with memory and the reticular formation pathway exhibit reversible microstructural white matter changes when concussion occurs, and these changes are exhibited to a different extent in different regions.
    Neural Regeneration Research 10/2012; 7(28):2206-12. DOI:10.3969/j.issn.1673-5374.2012.028.006 · 0.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffusion tensor imaging (DTI) studies in patients with schizophrenia have shown abnormalities in the microstructure of white matter tracts. Specifically, reduced fractional anisotropy (FA) has been described across multiple white matter tracts, in studies that have mainly included patients treated with antipsychotic medications. To compare FA in antipsychotic-naïve patients experiencing a first episode of psychosis (FEP) to FA in healthy controls to demonstrate that the variance of FA can be grouped, in a coincidental manner, in four predetermined factors in accordance with a theoretical partition of the white matter tracts, using a principal components analysis (PCA). Thirty-five antipsychotic-naïve FEP patients and 35 age- and gender-matched healthy controls underwent DTI at 3T. Analysis was performed using a tract-based spatial statistics (TBSS) method and exploratory PCA. DTI analysis showed extensive FA reduction in white matter tracts in FEP patients compared with the control group. The PCA grouped the white matter tracts into four factors explaining 66% of the total variance. Comparison of the FA values within each factor highlighted the differences between FEP patients and controls. Our study confirms extensive white matter tracts anomalies in patients with schizophrenia, more specifically, in drug-naïve FEP patients. The results also indicate that a small number of white matter tracts share common FA anomalies that relate to deficit symptoms in FEP patients. Our study adds to a growing body of literature emphasizing the need for treatments targeting white matter function and structure in FEP patients. Copyright © 2015 Elsevier B.V. All rights reserved.
    Schizophrenia Research 01/2015; 162(1-3). DOI:10.1016/j.schres.2015.01.019 · 4.43 Impact Factor
  • 01/2012; 02(07). DOI:10.4172/2161-0444.1000133

Full-text (2 Sources)

Available from
May 15, 2014