Article

Mrgprd enhances excitability in specific populations of cutaneous murine polymodal nociceptors.

Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 08/2009; 29(26):8612-9. DOI: 10.1523/JNEUROSCI.1057-09.2009
Source: PubMed

ABSTRACT The Mas-related G protein-coupled receptor D (Mrgprd) is selectively expressed in nonpeptidergic nociceptors that innervate the outer layers of mammalian skin. The function of Mrgprd in nociceptive neurons and the physiologically relevant somatosensory stimuli that activate Mrgprd-expressing (Mrgprd(+)) neurons are currently unknown. To address these issues, we studied three Mrgprd knock-in mouse lines using an ex vivo somatosensory preparation to examine the role of the Mrgprd receptor and Mrgprd(+) afferents in cutaneous somatosensation. In mouse hairy skin, Mrgprd, as marked by expression of green fluorescent protein reporters, was expressed predominantly in the population of nonpeptidergic, TRPV1-negative, C-polymodal nociceptors. In mice lacking Mrgprd, this population of nociceptors exhibited decreased sensitivity to cold, heat, and mechanical stimuli. Additionally, in vitro patch-clamp studies were performed on cultured dorsal root ganglion neurons from Mrgprd(-/-) and Mrgprd(+/-) mice. These studies revealed a higher rheobase in neurons from Mrgprd(-/-) mice than from Mrgprd(+/-) mice. Furthermore, the application of the Mrgprd ligand beta-alanine significantly reduced the rheobase and increased the firing rate in neurons from Mrgprd(+/-) mice but was without effect in neurons from Mrgprd(-/-) mice. Our results demonstrate that Mrgprd influences the excitability of polymodal nonpeptidergic nociceptors to mechanical and thermal stimuli.

0 Followers
 · 
94 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ectonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides. Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5’-monophosphate (AMP) to adenosine in primary somatosensory neurons. Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons. Ectonucleoside triphosphate diphosphohydrolases (ENTPDs) comprise a class of enzymes that dephosphorylate extracellular ATP and ADP. Here, we found that ENTPD3 (also known as NTPDase3 or CD39L3) was located in nociceptive and non-nociceptive neurons of the dorsal root ganglion (DRG), in the dorsal horn of the spinal cord, and in free nerve endings in the skin. To determine if ENTPD3 contributes directly to ATP and ADP hydrolysis in these tissues, we generated and characterized an Entpd3 knockout mouse. This mouse lacks ENTPD3 protein in all tissues examined, including the DRG, spinal cord, skin, and bladder. However, DRG and spinal cord tissues from Entpd3 -/- mice showed no reduction in histochemical staining when ATP, ADP, AMP, or UTP were used as substrates. Additionally, using fast-scan cyclic voltammetry (FSCV), adenosine production was not impaired in the dorsal spinal cord of Entpd3 -/- mice when the substrate ADP was applied. Further, Entpd3 -/- mice did not differ in nociceptive behaviors when compared to wild-type mice, although Entpd3 -/- mice showed a modest reduction in β-alanine-mediated itch. Taken together, our data indicate that deletion of Entpd3 does not impair ATP or ADP hydrolysis in primary somatosensory neurons or in dorsal spinal cord. Moreover, our data suggest there could be multiple ectonucleotidases that act redundantly to hydrolyze nucleotides in these regions of the nervous system.
    09/2014; 3. DOI:10.12688/f1000research.4563.2
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Normal and painful stimuli are detected by specialized subgroups of peripheral sensory neurons. The understanding of the functional differences of each neuronal subgroup would be strongly enhanced by knowledge of the respective subgroup transcriptome. The separation of the subgroup of interest, however, has proven challenging as they can hardly be enriched. Instead of enriching, we now rapidly eliminated the subgroup of neurons expressing the heat-gated cation channel TRPV1 from dissociated rat sensory ganglia. Elimination was accomplished by brief treatment with TRPV1 agonists followed by the removal of compromised TRPV1(+) neurons using density centrifugation. By differential microarray and sequencing (RNA-Seq) based expression profiling we compared the transcriptome of all cells within sensory ganglia versus the same cells lacking TRPV1 expressing neurons, which revealed 240 differentially expressed genes (adj. p<0.05, fold-change>1.5). Corroborating the specificity of the approach, many of these genes have been reported to be involved in noxious heat or pain sensitization. Beyond the expected enrichment of ion channels, we found the TRPV1 transcriptome to be enriched for GPCRs and other signaling proteins involved in adenosine, calcium, and phosphatidylinositol signaling. Quantitative population analysis using a recent High Content Screening (HCS) microscopy approach identified substantial heterogeneity of expressed target proteins even within TRPV1-positive neurons. Signaling components defined distinct further subgroups within the population of TRPV1-positive neurons. Analysis of one such signaling system showed that the pain sensitizing prostaglandin PGD2 activates DP1 receptors expressed predominantly on TRPV1(+) neurons. In contrast, we found the PGD2 producing prostaglandin D synthase to be expressed exclusively in myelinated large-diameter neurons lacking TRPV1, which suggests a novel paracrine neuron-neuron communication. Thus, subgroup analysis based on the elimination rather than enrichment of the subgroup of interest revealed proteins that define subclasses of TRPV1-positive neurons and suggests a novel paracrine circuit.
    PLoS ONE 12/2014; 9(12):e115731. DOI:10.1371/journal.pone.0115731 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Disorders of pain neural systems are frequently chronic and, when recalcitrant to treatment, can severely degrade the quality of life. The pain pathway begins with sensory neurons in dorsal root or trigeminal ganglia and the neuronal subpopulations that express the TRPV1 ion channel transduce sensations of painful heat and inflammation, and play a fundamental role in clinical pain arising from cancer and arthritis. In the present study we elucidate the complete transcriptomes of neurons from the TRPV1 lineage and a non-TRPV1 neuro-glial population in sensory ganglia through the combined application of next-gen deep RNA-Seq, genetic neuronal labeling with fluorescence-activated cell sorting, or neuron-selective chemoablation. RNA-Seq accurately quantitates gene expression, a difficult parameter to determine with most other methods especially for very low and very high expressed genes. Differentially expressed genes are present at every level of cellular function from the nucleus to the plasma membrane. We identified many ligand receptor pairs in the TRPV1 population suggesting that autonomous presynaptic regulation maybe a major regulatory mechanism in nociceptive neurons. The data define, in a quantitative, cell population specific fashion, the molecular signature of a distinct and clinically important group of pain-sensing neurons and provide an overall framework for understanding the transcriptome of TRPV1 nociceptive neurons.
    Journal of Pain 10/2014; 15(12). DOI:10.1016/j.jpain.2014.09.010 · 4.22 Impact Factor

Full-text (2 Sources)

Download
35 Downloads
Available from
May 27, 2014