Consistent neuroanatomical age-related volume differences across multiple samples

Center for the Study of Human Cognition, Department of Psychology, University of Oslo, Norway.
Neurobiology of aging (Impact Factor: 4.85). 07/2009; 32(5):916-32. DOI: 10.1016/j.neurobiolaging.2009.05.013
Source: PubMed

ABSTRACT Magnetic resonance imaging (MRI) is the principal method for studying structural age-related brain changes in vivo. However, previous research has yielded inconsistent results, precluding understanding of structural changes of the aging brain. This inconsistency is due to methodological differences and/or different aging patterns across samples. To overcome these problems, we tested age effects on 17 different neuroanatomical structures and total brain volume across five samples, of which one was split to further investigate consistency (883 participants). Widespread age-related volume differences were seen consistently across samples. In four of the five samples, all structures, except the brainstem, showed age-related volume differences. The strongest and most consistent effects were found for cerebral cortex, pallidum, putamen and accumbens volume. Total brain volume, cerebral white matter, caudate, hippocampus and the ventricles consistently showed non-linear age functions. Healthy aging appears associated with more widespread and consistent age-related neuroanatomical volume differences than previously believed.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aging is accompanied by changes of several anorexigenic and orexigenic neuropeptides expressed in various brain areas that control food intake and these changes correlate with senescent anorexia. During aging expression of cocaine- and amphetamine-regulated transcript (CART) peptide was reported to be reduced in the hypothalamic nuclei related to food intake. Although CART peptide is abundant in the nucleus accumbens that also plays a crucial role in the food intake regulation, no data is available about the CART peptide expression in this region through aging. In the present study, CART peptide immunoreactivity was compared in the nucleus accumbens of young adult (4- and 7-month-old) middle-aged (15-month-old) and aging (25-32-month-old) Long-Evans rats. The density of CART-immunoreactive cells and axon terminals in the nucleus accumbens was measured with computer-aided densitometry. CART-immunodensity was similar in the old rats and in the younger animals without significant difference between age groups. In addition, no gender-difference was observed when CART-immunoreactivities in the nucleus accumbens of male and female animals were compared. Our results indicate that CART peptide expression in the nucleus accumbens is stable in adults and does not change with age.
    Acta Biologica Hungarica 03/2015; 66(1):1-13. DOI:10.1556/ABiol.66.2015.1.1 · 0.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lifelong bilingualism is associated with the delayed diagnosis of dementia, suggesting bilingual experience is relevant to brain health in aging. While the effects of bilingualism on cognitive functions across the lifespan are well documented, less is known about the neural substrates underlying differential behavior. It is clear that bilingualism affects brain regions that mediate language abilities and that these regions are at least partially overlapping with those that exhibit age-related decline. Moreover, the behavioral advantages observed in bilingualism are generally found in executive function performance, suggesting that the frontal lobes may also be sensitive to bilingualism, which exhibit volume reductions with age. The current study investigated structural differences in the brain of lifelong bilingual older adults (n=14, mean age=70.4) compared with older monolinguals (n=14, mean age= 70.6). We employed two analytic approaches: 1) we examined global differences in grey and white matter volumes; and, 2) we examined local differences in volume and cortical thickness of specific regions of interest previously implicated in bilingual/monolingual comparisons (temporal pole) or in aging (entorhinal cortex and hippocampus). We expected bilinguals would exhibit greater volume of the frontal lobe and temporal lobe (grey and white matter), given the importance of these regions in executive and language functions, respectively. We further hypothesized that regions in the medial temporal lobe, which demonstrate early changes in aging and exhibit neural pathology in dementia, would be more preserved in the bilingual group. As predicted, bilinguals exhibit greater frontal lobe white matter compared with monolinguals. Moreover, increasing age was related to decreasing temporal pole cortical thickness in the monolingual group, but no such relationship was observed for bilinguals. Finally, Stroop task performance was positively correlated with frontal lobe white matter, emphasizing the importance of preserved white matter in maintaining executive function in aging. These results underscore previous findings implicating an association between bilingualism and preserved frontal and temporal lobe function in aging. Copyright © 2015. Published by Elsevier B.V.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While overall life expectancy has been increasing, the human brain still begins deteriorating after the first two decades of life and continues degrading further with increasing age. Thus, techniques that diminish the negative impact of aging on the brain are desirable. Existing research, although scarce, suggests meditation to be an attractive candidate in the quest for an accessible and inexpensive, efficacious remedy. Here, we examined the link between age and cerebral gray matter re-analyzing a large sample (n = 100) of long-term meditators and control subjects aged between 24 and 77 years. When correlating global and local gray matter with age, we detected negative correlations within both controls and meditators, suggesting a decline over time. However, the slopes of the regression lines were steeper and the correlation coefficients were stronger in controls than in meditators. Moreover, the age-affected brain regions were much more extended in controls than in meditators, with significant group-by-age interactions in numerous clusters throughout the brain. Altogether, these findings seem to suggest less age-related gray matter atrophy in long-term meditation practitioners.
    Frontiers in Psychology 01/2014; 5:1551. DOI:10.3389/fpsyg.2014.01551 · 2.80 Impact Factor

Full-text (3 Sources)

Available from
May 16, 2014