Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells.

Division of Cell and Molecular Biology, University Health Network, Toronto, ON M5G 1L7, Canada.
Cell stem cell (Impact Factor: 23.56). 08/2009; 5(1):31-42. DOI: 10.1016/j.stem.2009.04.018
Source: PubMed

ABSTRACT Leukemia stem cells (LSCs) initiate and sustain the acute myeloid leukemia (AML) clonal hierarchy and possess biological properties rendering them resistant to conventional chemotherapy. The poor survival of AML patients raises expectations that LSC-targeted therapies might achieve durable remissions. We report that an anti-interleukin-3 (IL-3) receptor alpha chain (CD123)-neutralizing antibody (7G3) targeted AML-LSCs, impairing homing to bone marrow (BM) and activating innate immunity of nonobese diabetic/severe-combined immunodeficient (NOD/SCID) mice. 7G3 treatment profoundly reduced AML-LSC engraftment and improved mouse survival. Mice with pre-established disease showed reduced AML burden in the BM and periphery and impaired secondary transplantation upon treatment, establishing that AML-LSCs were directly targeted. 7G3 inhibited IL-3-mediated intracellular signaling of isolated AML CD34(+)CD38(-) cells in vitro and reduced their survival. These results provide clear validation for therapeutic monoclonal antibody (mAb) targeting of AML-LSCs and for translation of in vivo preclinical research findings toward a clinical application.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence support the notion that acute myeloid leukemia (AML) is organized in a hierarchical system, originating from a special proportion of leukemia stem cells (LSC). Similar to their normal counterpart, hematopoietic stem cells (HSC), LSC possess self-renewal capacity and are responsible for the continued growth and proliferation of the bulk of leukemia cells in the blood and bone marrow. It is believed that LSC are also the root cause for the treatment failure and relapse of AML because LSC are often resistant to chemotherapy. In the past decade, we have made significant advancement in identification and understanding the molecular biology of LSC, but it remains a daunting task to specifically targeting LSC, while sparing normal HSC. In this review, we will first provide a historical overview of the discovery of LSC, followed by a summary of identification and separation of LSC by either cell surface markers or functional assays. Next, the review will focus on the current, various strategies for eradicating LSC. Finally, we will highlight future directions and challenges ahead of our ultimate goal for the cure of AML by targeting LSC.
    World journal of stem cells. 09/2014; 6(4):473-84.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite an increasingly rich understanding of its pathogenesis, acute myeloid leukemia remains a disease with poor outcomes, overwhelmingly due to disease relapse. In recent years, work to characterize the leukemia stem cell population, the disease compartment most difficult to eliminate with conventional therapy and most responsible for relapse, has been undertaken. This, in conjunction with advances in drug development that have allowed for increasingly targeted therapies to be engineered, raises the hope that we are entering an era in which the leukemia stem cell population can be eliminated, resulting in therapeutic cures for acute myeloid leukemia patients. For these therapies to become available, they must be tested in the setting of clinical trials. A long-established clinical trials infrastructure has been employed to shepherd new therapies from proof-of-concept to approval. However, due to the unique features of leukemia stem cells, drugs that are designed to specifically eliminate this population may not be adequately tested when applied to this model. Therefore, in this review article, we seek to identify the relevant features of acute myeloid leukemia stem cells for clinical trialists, discuss potential strategies to target leukemia stem cells, and propose a set of guidelines outlining the necessary elements of clinical trials to allow for the successful testing of stem cell-directed therapies.
    Haematologica 08/2014; 99(8):1277-1284. · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A specific targeting modality for hepatocellular carcinoma (HCC) could ideally encompass a liver cell specific delivery system of a transcriptional unit that is active only in neoplastic cells. Sendai virosomes, derived from Sendai viral envelopes, home to hepatocytes based on the liver specific expression of asialoglycoprotein receptors (ASGPRs) which are recognized by the Sendai virosomal fusion (F) proteins. As reported earlier by us and other groups, transcriptional gene silencing (TGS) does not require continuous presence of the effector siRNA/shRNA molecule and is heritable, involving epigenetic modifications, leading to long term transcriptional repression. This could be advantageous over conventional gene therapy approaches, since continuous c-Myc inactivation is required to suppress hepatocarcinoma cells.
    BMC Cancer 08/2014; 14(1):582. · 3.33 Impact Factor


Available from
May 29, 2014