Article

The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms).

Ocean Genome Legacy Inc, Ipswich, MA, USA.
PLoS ONE (Impact Factor: 3.53). 02/2009; 4(7):e6085. DOI: 10.1371/journal.pone.0006085
Source: PubMed

ABSTRACT Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the host's nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2-40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (>100). However, unlike S. degradans, which degrades a broad spectrum (>10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels.

0 Bookmarks
 · 
334 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recovering individual genomes from metagenomic datasets allows access to uncultivated microbial populations that may have important roles in natural and engineered ecosystems. Understanding the roles of these uncultivated populations has broad application in ecology, evolution, biotechnology and medicine. Accurate binning of assembled metagenomic sequences is an essential step in recovering the genomes and understanding microbial functions.
    Microbiome. 01/2014; 2:26.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Teredinibacter turnerae is a cultivable intracellular endosymbiont of xylotrophic (woodfeeding)bivalves of the Family Teredinidae (shipworms). Although T. turnerae has been isolated from many shipworm taxa collected in many locations, no systematic effort has been made to explore genetic diversity within this symbiont species across the taxonomic and geographical range of its hosts. The mode of symbiont transmission is unknown. Here, we examine sequence diversity in fragments of six genes (16S rRNA, gyrB, sseA, recA, rpoB and celAB) among 25 isolates of T. turnerae cultured from 13 shipworm species collected in 15 locations in the Atlantic, Pacific and Indian Oceans. While 16S rRNA sequences are nearly invariant between all examined isolates (maximum pairwise difference <0.26%), variation between examined protein-coding loci is greater (mean pairwise difference 2.2–5.9%). Phylogenetic analyses based on each protein-coding locus differentiate the 25 isolates into two distinct and well-supported clades. With five exceptions, clade assignments for each isolate were supported by analysis of alleles of each of the five protein-coding loci. These exceptions include (i) putative recombinant alleles of the celAB and gyrB loci in two isolates (PMS-535T.S.1b.3 and T8510), suggesting homologous recombination between members of the two clades; and (ii) evidence for a putative lateral gene transfer event affecting a second locus (recA) in three isolates (T8412, T8503 and T8513). These results demonstrate that T. turnerae isolates do not represent a homogeneous global population. Instead, they indicate the emergence of two lineages that, although distinct, likely experience some level of genetic exchange with each other and with other bacterial species.
    Molecular Ecology 03/2014; 23(6):1418-32. · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life.
    PLoS ONE 01/2014; 9(5):e96248. · 3.53 Impact Factor

Full-text (2 Sources)

Download
46 Downloads
Available from
May 20, 2014