KRAS and YAP1 Converge to Regulate EMT and Tumor Survival.

Cell 06/2014;
Source: PubMed

ABSTRACT Cancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival upon KRAS suppression. In particular, the transcriptional coactivator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The transcriptional regulators YAP and TAZ are the focus of intense interest given their remarkable biological properties in development, tissue homeostasis and cancer. YAP and TAZ activity is key for the growth of whole organs, for amplification of tissue-specific progenitor cells during tissue renewal and regeneration, and for cell proliferation. In tumors, YAP/TAZ can reprogram cancer cells into cancer stem cells and incite tumor initiation, progression and metastasis. As such, YAP/TAZ are appealing therapeutic targets in cancer and regenerative medicine. Just like the function of YAP/TAZ offers a molecular entry point into the mysteries of tissue biology, their regulation by upstream cues is equally captivating. YAP/TAZ are well known for being the effectors of the Hippo signaling cascade, and mouse mutants in Hippo pathway components display remarkable phenotypes of organ overgrowth, enhanced stem cell content and reduced cellular differentiation. YAP/TAZ are primary sensors of the cell's physical nature, as defined by cell structure, shape and polarity. YAP/TAZ activation also reflects the cell "social" behavior, including cell adhesion and the mechanical signals that the cell receives from tissue architecture and surrounding extracellular matrix (ECM). At the same time, YAP/TAZ entertain relationships with morphogenetic signals, such as Wnt growth factors, and are also regulated by Rho, GPCRs and mevalonate metabolism. YAP/TAZ thus appear at the centerpiece of a signaling nexus by which cells take control of their behavior according to their own shape, spatial location and growth factor context.
    Physiological Reviews 10/2014; 94(4):1287-1312. · 29.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genomic instability is a key hallmark of cancer leading to tumour heterogeneity and therapeutic resistance. BRCA2 has a fundamental role in error-free DNA repair but also sustains genome integrity by promoting RAD51 nucleofilament formation at stalled replication forks. CDK2 phosphorylates BRCA2 (pS3291-BRCA2) to limit stabilizing contacts with polymerized RAD51; however, how replication stress modulates CDK2 activity and whether loss of pS3291-BRCA2 regulation results in genomic instability of tumours are not known. Here we demonstrate that the Hippo pathway kinase LATS1 interacts with CDK2 in response to genotoxic stress to constrain pS3291-BRCA2 and support RAD51 nucleofilaments, thereby maintaining genomic fidelity during replication stalling. We also show that LATS1 forms part of an ATR-mediated response to replication stress that requires the tumour suppressor RASSF1A. Importantly, perturbation of the ATR-RASSF1A-LATS1 signalling axis leads to genomic defects associated with loss of BRCA2 function and contributes to genomic instability and 'BRCA-ness' in lung cancers.
    Nature Cell Biology 09/2014; · 20.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The capacity of cancer cells to undergo epithelial mesenchymal trans-differentiation has been implicated as a factor driving metastasis, through the acquisition of enhanced migratory/invasive cell programs and the engagement of anti-apoptotic mechanisms promoting drug and radiation resistance. Our aim was to define molecular signaling changes associated with mesenchymal trans-differentiation in two KRas mutant NSCLC models. We focused on central transcription and epigenetic regulators predicted to be important for mesenchymal cell survival. We have modeled trans-differentiation and cancer stemness in inducible isogenic mutant-KRas H358 and A549 non-small cell lung cell backgrounds. As expected, our models show mesenchymal-like tumor cells acquire novel mechanisms of cellular signaling not apparent in their epithelial counterparts. We employed large-scale quantitative phosphoproteomic, proteomic, protein-protein interaction, RNA-Seq, and network function prediction approaches to dissect the molecular events associated with the establishment and maintenance of the mesenchymal state. Gene-set enrichment and pathway prediction indicated BMI1, KDM5B, RUNX2, MYC/MAX, NFκB, LEF1, and HIF1 target networks were significantly enriched in the trans-differentiation of H358 and A549 NSCLC models. Physical overlaps between multiple networks implicate NR4A1 as an overlapping control between TCF and NFκB pathways. Enrichment correlations also indicated marked decrease in cell cycling, which occurred early in the EMT process. RNA abundance time course studies also indicated early expression of epigenetic and chromatin regulators within 8-24 h, including CITED4, RUNX3, CMBX1, and SIRT4. Multiple transcription and epigenetic pathways where altered between epithelial and mesenchymal tumor cell states, notably the polycomb repressive complex-1, HP1γ, and BAF/Swi-Snf. Network analysis suggests redundancy in the activation and inhibition of pathway regulators, notably factors controlling epithelial cell state. Through large-scale transcriptional and epigenetic cell reprograming, mesenchymal trans-differentiation can promote diversification of signaling networks potentially important in resistance to cancer therapies.
    Frontiers in Oncology 12/2014; 4:344.