Article

Discovery of new glomerular disease-relevant genes by translational profiling of podocytes in vivo.

Kidney International (Impact Factor: 8.52). 06/2014; DOI: 10.1038/ki.2014.204
Source: PubMed

ABSTRACT Identifying new biomarkers and therapeutic targets for podocytopathies such as focal segmental glomerulosclerosis (FSGS) requires a detailed analysis of transcriptional changes in podocytes over the course of disease. Here we used translating ribosome affinity purification (TRAP) to isolate and profile podocyte-specific mRNA in two different models of FSGS. We expressed enhanced green fluorescent protein-tagged to ribosomal protein L10a in podocytes under the control of the collagen-1α1 promoter, enabling one-step podocyte-specific mRNA isolation over the course of disease. This TRAP protocol robustly enriched known podocyte-specific mRNAs. We crossed Col1α1-eGFP-L10a mice with the Actn4(-/-) and Actn4(+/K256E) models of FSGS and analyzed podocyte transcriptional profiles at 2, 6, and 44 weeks of age. Two upregulated podocyte genes in murine FSGS (CXCL1 and DMPK) were found to be upregulated at the protein level in biopsies from patients with FSGS, validating this approach. There was no dilution of podocyte-specific transcripts during disease. These are the first podocyte-specific RNA expression data sets during aging and in two models of FSGS. This approach identified new podocyte proteins that are upregulated in FSGS and defines novel biomarkers and therapeutic targets for human glomerular disease.Kidney International advance online publication, 18 June 2014; doi:10.1038/ki.2014.204.

1 Follower
 · 
50 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The coordination of gene expression is critical for cell differentiation and the subsequent establishment of tissue function. We show here that a multiple zinc finger transcription factor, Zfp423/OAZ, is transiently expressed in newly differentiating olfactory-receptor neurons (ORNs) and has a key role in coordinating the expression of immature and mature stage-specific genes. OAZ deletion in mice impairs aspects of ORN differentiation, particularly the patterns of axonal projection to the olfactory bulb. OAZ gain-of-function experiments show that sustained OAZ expression throughout ORN maturation arrests ORN development at an immature stage and alters OR gene expression. Importantly, reintroducing OAZ expression in mature ORNs suppresses mature marker expression and reactivates immature-specific markers. Together, these experiments suggest that OAZ participates in a developmental switch regulating the transition from differentiation to maturation in ORNs.
    Neuron 06/2007; 54(4):547-57. DOI:10.1016/j.neuron.2007.04.029 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past 30 years there have been major improvements in the care of children with chronic kidney disease (CKD). However, most of the available epidemiological data stem from end-stage renal disease (ESRD) registries and information on the earlier stages of pediatric CKD is still limited. The median reported incidence of renal replacement therapy (RRT) in children aged 0-19 years across the world in 2008 was 9 (range: 4-18) [corrected] per million of the age-related population). [corrected] The prevalence of RRT in 2008 ranged from 18 to 100 per million of the age-related population. Congenital disorders, including congenital anomalies of the kidney and urinary tract (CAKUT) and hereditary nephropathies, are responsible for about two thirds of all cases of CKD in developed countries, while acquired causes predominate in developing countries. Children with congenital disorders experience a slower progression of CKD than those with glomerulonephritis, resulting in a lower proportion of CAKUT in the ESRD population compared with less advanced stages of CKD. Most children with ESRD start on dialysis and then receive a transplant. While the survival rate of children with ERSD has improved, it remains about 30 times lower than that of healthy peers. Children now mainly die of cardiovascular causes and infection rather than from renal failure.
    Pediatric Nephrology 06/2011; 27(3):363-73. DOI:10.1007/s00467-011-1939-1 · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria play a central role in regulating apoptosis by releasing proapoptotic contents such as cytochrome c, and generating reactive oxygen species (ROS). Early in apoptosis, proteins translocate to mitochondria to promote the release of their contents. Here, we show that the actin- and cofilin-interacting protein CAP1 has a role in apoptosis. When we induced apoptosis, CAP1 rapidly translocated to the mitochondria independently of caspase activation. Translocation was proapoptotic because CAP1-knockdown cells were resistant to apoptosis inducers. Overexpression of wild-type CAP1 did not stimulate apoptosis on its own, but stimulated cofilin-induced apoptosis. Apoptosis induction required a mitochondrial-targeting domain, localized in the N-terminus and also the actin-binding domain in the C-terminus. Taken together, these studies suggest that CAP1 provides a direct link from the actin cytoskeleton to the mitochondria by functioning as an actin shuttle.
    Journal of Cell Science 10/2008; 121(Pt 17):2913-20. DOI:10.1242/jcs.023911 · 5.33 Impact Factor