Abnormal Behavior in a Chromosome- Engineered Mouse Model for Human 15q11-13 Duplication Seen in Autism

Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan.
Cell (Impact Factor: 32.24). 07/2009; 137(7):1235-46. DOI: 10.1016/j.cell.2009.04.024
Source: PubMed


Substantial evidence suggests that chromosomal abnormalities contribute to the risk of autism. The duplication of human chromosome 15q11-13 is known to be the most frequent cytogenetic abnormality in autism. We have modeled this genetic change in mice by using chromosome engineering to generate a 6.3 Mb duplication of the conserved linkage group on mouse chromosome 7. Mice with a paternal duplication display poor social interaction, behavioral inflexibility, abnormal ultrasonic vocalizations, and correlates of anxiety. An increased MBII52 snoRNA within the duplicated region, affecting the serotonin 2c receptor (5-HT2cR), correlates with altered intracellular Ca(2+) responses elicited by a 5-HT2cR agonist in neurons of mice with a paternal duplication. This chromosome-engineered mouse model for autism seems to replicate various aspects of human autistic phenotypes and validates the relevance of the human chromosome abnormality. This model will facilitate forward genetics of developmental brain disorders and serve as an invaluable tool for therapeutic development.

Download full-text


Available from: Kota Tamada,
  • Source
    • "A mouse model with a duplication syntenic to human interstitial duplications of 15q11.2-q13, displayed behavioral deficits characteristic of autism, possibly caused by a deficit in 5-HT2c receptor signaling (Nakatani et al., 2009; Tamada et al., 2010). These data support the hypothesis that the level of UBE3A expressed from the maternal allele in neurons is critical to neuronal development and function; deficiency for maternal UBE3A resulting in Angelman syndrome and duplication of maternal UBE3A driving increased autism risk. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes in UBE3A expression levels in neurons can cause neurogenetic disorders ranging from Angelman syndrome (AS) (decreased levels) to autism (increased levels). Here we investigated the effects on neuronal function of varying UBE3A levels using the Drosophila neuromuscular junction as a model for both of these neurogenetic disorders. Stimulations that evoked excitatory junction potentials (EJPs) at 1 Hz intermittently failed to evoke EJPs at 15 Hz in a significantly higher proportion of Dube3a over-expressors using the pan neuronal GAL4 driver C155-GAL4 (C155-GAL4>UAS-Dube3a) relative to controls (C155>+ alone). However, in the Dube3a over-expressing larval neurons with no failures, there was no difference in EJP amplitude at the beginning of the train, or the rate of decrease in EJP amplitude over the course of the train compared to controls. In the absence of tetrodotoxin (TTX), spontaneous EJPs were observed in significantly more C155-GAL4>UAS-Dube3a larva compared to controls. In the presence of TTX, spontaneous and evoked EJPs were completely blocked and mEJP amplitude and frequency did not differ among genotypes. These data suggest that over-expression of wild type Dube3a, but not a ubiquitination defective Dube3a-C/A protein, compromises the ability of motor neuron axons to support closely spaced trains of action potentials, while at the same time increasing excitability. EJPs evoked at 15 Hz in the absence of Dube3a (Dube3a(15b) homozygous mutant larvae) decayed more rapidly over the course of 30 stimulations compared to w(1118) controls, and Dube3a(15b) larval muscles had significantly more negative resting membrane potentials (RMP). However, these results could not be recapitulated using RNAi knockdown of Dube3a in muscle or neurons alone, suggesting more global developmental defects contribute to this phenotype. These data suggest that reduced UBE3A expression levels may cause global changes that affect RMP and neurotransmitter release from motorneurons at the neuromuscular junction. Similar affects of under- and over-expression of UBE3A on membrane potential and synaptic transmission may underlie the synaptic plasticity defects observed in both AS and autism. © 2015. Published by The Company of Biologists Ltd.
    Biology Open 05/2015; 4(7). DOI:10.1242/bio.20148045 · 2.42 Impact Factor
  • Source
    • "In vitro studies show that editing (Vitali et al., 2005) and splicing (Kishore & Stamm, 2006) of the Htr2c RNA are regulated by the snoRNA mbii52. Mouse models where mbii52 levels were either increased (Nakatani et al., 2009) or decreased (Doe et al., 2009) express higher levels of Htr2c editing. This suggests a dynamic interplay between mbii52 and the Htr2c RNA, and we therefore measured snoRNA levels when editing is blocked in our INI mice. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The 5-hydroxytryptamine2C (5-HT)2C receptor is widely implicated in the aetiology of affective and eating disorders as well as regulation of the hypothalamo-pituitary-adrenal axis. Signalling through this receptor is regulated by A-to-I RNA editing, affecting three amino acids in the protein sequence, with unedited transcripts encoding a receptor (INI) that, in vitro, is hyperactive compared with edited isoforms. Targeted alteration (knock-in) of the Htr2c gene to generate ‘INI’ mice with no alternate splicing, solely expressing the full-length unedited isoform, did not produce an overt metabolic phenotype or altered anxiety behaviour, but did display reduced depressive-like and fear-associated behaviours. INI mice exhibited a hyperactive hypothalamo-pituitary-adrenal axis, with increased nadir plasma corticosterone and corticotrophin-releasing hormone expression in the hypothalamus but responded normally to chronic stress and showed normal circadian activity and activity in a novel environment. The circadian patterns of 5-HT2C receptor mRNA and mbii52, a snoRNA known to regulate RNA editing and RNA splicing of 5-HT2C receptor pre-mRNA, were altered in INI mice compared with wild-type control mice. Moreover, levels of 5-HT1A receptor mRNA were increased in the hippocampus of INI mice. These gene expression changes may underpin the neuroendocrine and behavioural changes observed in INI mice. However, the phenotype of INI mice was not consistent with a globally hyperactive INI receptor encoded by the unedited transcript in the absence of alternate splicing. Hence, the in vivo outcome of RNA editing may be neuronal cell type specific.
    European Journal of Neuroscience 09/2014; 40(11). DOI:10.1111/ejn.12727 · 3.18 Impact Factor
  • Source
    • "Early rodent studies showed that anxiolytics prevent decreases in social interaction that occur when animals are placed in anxiogenic environments (i.e., novel environments, bright light) (File et al., 1976; File and Hyde, 1978; File and Seth, 2003). Further, various autistic mouse models exhibit both pronounced deficits in sociability as well as enhanced anxiety-like behaviors (Nakatani et al., 2009; Silverman et al., 2010; Peça et al., 2011). In line with human literature, serotonin activity in rodents mediates social behaviors such as aggression and social reward (Saudou et al., 1994; Dölen et al., 2013), while reduced serotonin signaling increases anxiety (Heisler et al., 1998; Ramboz et al., 1998; Gross et al., 2002; Akimova et al., 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Many psychiatric illnesses are characterized by deficits in the social domain. For example, there is a high rate of co-morbidity between autism spectrum disorders and anxiety disorders. However, the common neural circuit mechanisms by which social deficits and other psychiatric disease states, such as anxiety, are co-expressed remains unclear. Here, we review optogenetic investigations of neural circuits in animal models of anxiety-related behaviors and social behaviors and discuss the important role of the amygdala in mediating aspects of these behaviors. In particular, we focus on recent evidence that projections from the basolateral amygdala (BLA) to the ventral hippocampus (vHPC) modulate anxiety-related behaviors and also alter social interaction. Understanding how this circuit influences both social behavior and anxiety may provide a mechanistic explanation for the pathogenesis of social anxiety disorder, as well as the prevalence of patients co-diagnosed with autism spectrum disorders and anxiety disorders. Furthermore, elucidating how circuits that modulate social behavior also mediate other complex emotional states will lead to a better understanding of the underlying mechanisms by which social deficits are expressed in psychiatric disease.
    Frontiers in Behavioral Neuroscience 07/2014; 8(241):1-14. DOI:10.3389/fnbeh.2014.00241 · 3.27 Impact Factor
Show more