Involvement of Fas/FasL system in apoptotic signaling in testicular germ cells of male Wistar rats injected i.v. with microcystins

Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China.
Toxicon (Impact Factor: 2.58). 08/2009; 54(1):1-7. DOI: 10.1016/j.toxicon.2009.01.035
Source: PubMed

ABSTRACT Previous studies have shown that gonads were the second target organ of microcystins (MCs), and that MCs exposure exerted obvious toxic effects on male reproductive system of mammals. However, relevant molecular evidences are still lacking. Fas-signaling pathway plays a key role in toxicant-induced germ cell apoptosis. This study was to evaluate the responses of Fas/FasL system related genes and proteins in testes of rats injected intravenously with MCs. Enhanced apoptosis of germ cells in the testes of MCs-treated rats was detected by the terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling (TUNEL) associated with up-regulation of the Fas/FasL system. Both Fas and FasL protein expression were induced evidently from 1 h post-injection, and this high expression level maintained throughout the experiment. In addition, the activation of caspase-8 and caspase-3 protein was also observed, which were indicators of apoptosis. These results suggested the likely involvement of Fas/FasL system in the MCs-induced germ cell apoptosis. It is also suggested that MCs can cause damage to Sertoli cells directly.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Microcystin-LR (MC-LR) is the most toxic and common among microcystins. In order to understand the possible molecular mechanisms of hepatic antioxidation and detoxification, the activities and transcriptional levels of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S-transferases (GST), and glutathione (GSH) contents as well as histopathological changes were studied in the liver of female zebrafish injected intraperitoneally (i.p.) at doses of 50 and 200μg MC-LR kg(-1) body weight (BW) respectively. In the low dose group (50μg MC-LR kg(-1)), zebrafish displayed a little unease at the initial 1h post-injection (hpi), slight hepatic injury and quick recovery, and enhanced enzymatic activities and up-regulated gene expression of antioxidant enzymes. In contrast, high dose of MC-LR (200μg MC-LR kg(-1)) resulted in uneasiness and frantic swimming, severe hepatic injury, and suppressed enzymatic activities and down-regulated gene expression of antioxidant enzymes. GSH depletion in both dose groups may be explained by enhanced antioxidant reactions and higher rates of MC conjugation, suggesting the crucial roles of GSH in both cellular antioxidant protection and MC-LR detoxification. This study demonstrated that administration of MC-LR caused a positive response in the low dose group but a negative response in the high dose group. Hepatic positive/negative responses in the low/high dose group might result from an increased/decreased synthesis of antioxidant enzymes at the molecular level, respectively. These results illustrated that antioxidant status played an important role in zebrafish protection against MC-LR-caused oxidative stress through regulating antioxidant enzyme gene expression and activities. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Chemosphere 02/2015; 120:729-36. DOI:10.1016/j.chemosphere.2014.09.079 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the treatment effects of a new compound, strontium fructose 1, 6-diphosphate (FDP-Sr), in cyclophosphamide (CP)-induced oligozoospermia. FDP-Sr, with extra high-energy supply, could reverse male hypogonadism in the testis. Male Wistar rats were randomly divided into three groups: control group (vehicle treated), CP group and CP + FDP-Sr group. Both CP group and CP + FDP-Sr groups were orally administered CP (20 mg kg−1) consecutively for the first 7 days to establish CP-induced testicular toxic models. Subsequently, CP group was given orally distilled water per day, whereas CP + FDP-Sr group was received FDP-Sr (200 mg kg−1) for 49 days. Compared to the CP group, the FDP-Sr group showed significantly increased levels of serum testosterone, testis relative weights and epididymal sperm counts in rats. In addition, rats treated by FDP-Sr showed the recuperative activities of testicular marker enzymes and normalised levels of antioxidants in tissue. Testicular protection of FDP-Sr was further demonstrated by enhancing expression of P450scc, reducing ability of FAS/FASL and generating cytoprotection in the histopathological study. FDP-Sr appeared to possess an ability to attenuate CP-induced reproduction toxicity via the activation of antioxidants and steroidogenesis enzymes, and alleviate oligozoospermia via inhibition of testicular apoptosis by FAS/FASL pathway.
    Andrologia 11/2014; DOI:10.1111/and.12369 · 1.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toxic cyanobacterial blooms are potential global threats to aquatic ecosystems and human health. The World Health Organization has set a provisional guideline limit of 1 μg/L microcystin-LR (MCLR) in freshwater. However, MCLR concentrations in several water bodies have exceeded this level. Despite this recommended human safety standard, MCLR-induced endocrine-disrupting effects and reproductive toxicity on male frog (Rana nigromaculata) were demonstrated in this study. Results showed that sperm motility and sperm count were significantly and negatively correlated with exposure time and concentration. By contrast, abnormal sperm rate was positively correlated with both parameters. Ultrastructural observation results revealed abnormal sperm morphologies, vacuoles in spermatogenic cells, cell dispersion, incomplete cell structures, and deformed nucleoli. These results indicated that MCLR could induce toxic effects on the reproductive system of frogs, significantly decrease testosterone content, and rapidly increase estradiol content. Prolonged exposure and increased concentration enhanced the relative expression levels of P450 aromatase and steroidogenic factor 1; thus, endocrine function in frogs was disrupted. This study is the first to demonstrate in vivo MCLR toxicity in the reproductive system of male R. nigromaculata. This study provided a scientific basis of the global decline in amphibian populations.
    Aquatic Toxicology 10/2014; 155:24–31. DOI:10.1016/j.aquatox.2014.06.002 · 3.51 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014