Article

The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer.

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
Nature Genetics (Impact Factor: 29.65). 07/2009; 41(8):882-4. DOI: 10.1038/ng.403
Source: PubMed

ABSTRACT An inherited variant on chromosome 8q24, rs6983267, is significantly associated with cancer pathogenesis. We present evidence that the region harboring this variant is a transcriptional enhancer, that the alleles of rs6983267 differentially bind transcription factor 7-like 2 (TCF7L2) and that the risk region physically interacts with the MYC proto-oncogene. These data provide strong support for a biological mechanism underlying this non-protein-coding risk variant.

0 Followers
 · 
182 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple regulatory elements distant from their targets on the linear genome can influence the expression of a single gene through chromatin looping. Chromosome conformation capture implemented in Hi-C allows for genome-wide agnostic characterization of chromatin contacts. However, detection of functional enhancer-promoter interactions is precluded by its effective resolution that is determined by both restriction fragmentation and sensitivity of the experiment. Here we develop a capture Hi-C (cHi-C) approach to allow an agnostic characterization of these physical interactions on a genome-wide scale. Single-nucleotide polymorphisms associated with complex diseases often reside within regulatory elements and exert effects through long-range regulation of gene expression. Applying this cHi-C approach to 14 colorectal cancer risk loci allows us to identify key long-range chromatin interactions in cis and trans involving these loci.
    Nature Communications 02/2015; 6. DOI:10.1038/ncomms7178 · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heritability is one of the strongest risk factors of prostate cancer, emphasizing the importance of the genetic contribution towards prostate cancer risk. To date, 86 established prostate cancer risk variants have been identified by genome-wide association studies (GWAS). To determine if these risk variants are located near genes that interact together in biological networks or pathways contributing to prostate cancer initiation or progression, we generated gene sets based on proximity to the 86 prostate cancer risk variants. We took two approaches to generate gene lists. The first strategy included all immediate flanking genes, up- and downstream of the risk variant, regardless of distance from the index variant, and the second strategy included genes closest to the index GWAS marker and to variants in high LD (r2 ≥0.8 in Europeans) with the index variant, within a 100 kb window up- and downstream. Pathway mapping of the two gene sets supported the importance of the androgen receptor-mediated signaling in prostate cancer biology. In addition, the hedgehog and Wnt/β-catenin signaling pathways were identified in pathway mapping for the flanking gene set. We also used the HaploReg resource to examine the 86 risk loci and variants high LD (r2 ≥0.8) for functional elements. We found that there was a 12.8 fold (p = 2.9 x 10-4) enrichment for enhancer motifs in a stem cell line and a 4.4 fold (p = 1.1 x 10-3) enrichment of DNase hypersensitivity in a prostate adenocarcinoma cell line, indicating that the risk and correlated variants are enriched for transcriptional regulatory motifs. Our pathway-based functional annotation of the prostate cancer risk variants highlights the potential regulatory function that GWAS risk markers, and their highly correlated variants, exert on genes. Our study also shows that these genes may function cooperatively in key signaling pathways in prostate cancer biology.
    PLoS ONE 02/2015; 10(2):e0117873. DOI:10.1371/journal.pone.0117873 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWASs) have identified thousands of genes and genetic variants (mainly SNPs) that contribute to complex diseases in humans. Functional characterization and mechanistic elucidation of these SNPs and genes action are the next major challenge. It has been well established that SNPs altering the amino acids of protein-coding genes can drastically impact protein function, and play an important role in molecular pathogenesis. Functions of regulatory SNPs can be complex and elusive, and involve gene expression regulation through the effect on RNA splicing, transcription factor binding, DNA methylation and miRNA recruitment. In the present review, we summarize the recent progress in our understanding of functional consequences of GWAS-associated non-coding regulatory SNPs, and discuss the application of systems genetics and network biology in the interpretation of GWAS findings. Copyright © 2015 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
    Journal of Genetics and Genomics 02/2015; 42(3). DOI:10.1016/j.jgg.2015.02.001 · 2.92 Impact Factor

Full-text (2 Sources)

Download
24 Downloads
Available from
May 28, 2014