Article

Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density.

DeCODE genetics, Sturlugata 8, 101 Reykjavik, Iceland.
Nature Genetics (Impact Factor: 29.65). 07/2009; 41(8):926-30. DOI: 10.1038/ng.404
Source: PubMed

ABSTRACT Kidney stone disease is a common condition. To search for sequence variants conferring risk of kidney stones, we conducted a genome-wide association study in 3,773 cases and 42,510 controls from Iceland and The Netherlands. We discovered common, synonymous variants in the CLDN14 gene that associate with kidney stones (OR = 1.25 and P = 4.0 x 10(-12) for rs219780[C]). Approximately 62% of the general population is homozygous for rs219780[C] and is estimated to have 1.64 times greater risk of developing the disease compared to noncarriers. The CLDN14 gene is expressed in the kidney and regulates paracellular permeability at epithelial tight junctions. The same variants were also found to associate with reduced bone mineral density at the hip (P = 0.00039) and spine (P = 0.0077).

0 Followers
 · 
180 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Calcium (Ca(2+)) is a key constituent in a myriad of physiological processes from intracellular signalling to the mineralization of bone. As a consequence, Ca(2+) is maintained within narrow limits when circulating in plasma. This is accomplished via regulated interplay between intestinal absorption, renal tubular reabsorption, and exchange with bone. Many studies have focused on the highly regulated active transcellular transport pathways for Ca(2+) from the duodenum of the intestine and the distal nephron of the kidney. However, comparatively little work has examined the molecular constituents creating the paracellular shunt across intestinal and renal epithelium, the transport pathway responsible for the majority of transepithelial Ca(2+) flux. More specifically, passive paracellular Ca(2+) absorption occurs across the majority of the intestine in addition to the renal proximal tubule and thick ascending limb of Henle's loop. Importantly, recent studies demonstrated that Ca(2+) transport through the paracellular shunt is significantly regulated. Therefore, we have summarized the evidence for different modes of paracellular Ca(2+) flux across renal and intestinal epithelia and highlighted recent molecular insights into both the mechanism of secondarily active paracellular Ca(2+) movement and the identity of claudins that permit the passage of Ca(2+) through the tight junction of these epithelia.
    Biochemistry and Cell Biology 09/2014; 92(6):1-14. DOI:10.1139/bcb-2014-0061 · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The thick ascending limb occupies a central anatomic and functional position in human renal physiology, with critical roles in the defense of the extracellular fluid volume, the urinary concentrating mechanism, calcium and magnesium homeostasis, bicarbonate and ammonium homeostasis, and urinary protein composition. The last decade has witnessed tremendous progress in the understanding of the molecular physiology and pathophysiology of this nephron segment. These advances are the subject of this review, with emphasis on particularly recent developments.
    Clinical Journal of the American Society of Nephrology 10/2014; 9(11). DOI:10.2215/CJN.04480413 · 5.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tight junction is an important subcellular organelle which plays a vital role in epithelial barrier function. Claudin, as the integral membrane component of tight junctions, creates a paracellular transport pathway for various ions to be reabsorbed by the kidneys. This review summarizes advances in claudin structure, function and pathophysiology in kidney diseases. Different claudin species confer selective paracellular permeability to each of three major renal tubular segments: the proximal tubule, the thick ascending limb of Henle's loop and the distal nephron. Defects in claudin function can cause a wide spectrum of kidney diseases, such as hypomagnesemia, hypercalciuria, kidney stones and hypertension. Studies using transgenic mouse models with claudin mutations have recapitulated several of these renal disease phenotypes and have elucidated the underlying biological mechanisms. Modern recording approaches based upon scanning ion conductance microscopy may resolve the biophysical nature of claudin transport function and provide novel insight into tight junction architecture.
    International Journal of Molecular Medicine 10/2014; 34(6). DOI:10.3892/ijmm.2014.1955 · 1.88 Impact Factor

Full-text (2 Sources)

Download
46 Downloads
Available from
May 19, 2014