Article

A pipeline for the quantitative analysis of CG dinucleotide methylation using mass spectrometry.

Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
Bioinformatics (Impact Factor: 4.62). 07/2009; 25(17):2164-70. DOI: 10.1093/bioinformatics/btp382
Source: PubMed

ABSTRACT MOTIVATION: DNA cytosine methylation is an important epigenetic regulator, critical for mammalian development and the control of gene expression. Numerous techniques using either restriction enzyme or affinity-based approaches have been developed to interrogate cytosine methylation status genome-wide, however these assays must be validated by a more quantitative approach, such as MALDI-TOF mass spectrometry of bisulphite-converted DNA (commercialized as Sequenom's EpiTYPER assay using the MassArray system). Here, we present an R package ('MassArray') that assists in assay design and uses the standard Sequenom output file as the input to a pipeline of analyses not available as part of the commercial software. The tools in this package include bisulphite conversion efficiency calculation, sequence polymorphism flagging and visualization tools that combine multiple experimental replicates and create tracks for genome browser viewing.

Download full-text

Full-text

Available from: Reid F Thompson, Nov 11, 2014
0 Followers
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffin-embedded (FFPE) DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens. For effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll™ Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and -RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and -RNA than the two other methods, and particularly provides higher quality microRNAs and genomic DNA for subsequent molecular analyses. We determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses. Our optimized approach provides the option of collecting DNA, which would otherwise be discarded or degraded, for additional or subsequent studies.
    PLoS ONE 04/2012; 7(4):e34683. DOI:10.1371/journal.pone.0034683 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the origin of phenotypic variation remains one of the principle challenges of contemporary biology. Recent genome-wide association studies have identified association between common genetic variants and complex phenotype; however, the minimal effect sizes observed in such studies highlight the potential for other causal factors to be involved in phenotypic variation. The epigenetic state of an organism (or 'epigenome') incorporates a landscape of complex and plastic molecular events that may underlie the 'missing link' that integrates genotype with phenotype. The nature of these processes has been the subject of intense scientific study over the recent years, and characterisation of epigenetic variation, in the form of 'epialleles', is providing fascinating insight into how the genome functions within a range of developmental processes, environments, and in states of health and disease. This review will discuss how and when mammalian epialleles may be generated and their interaction with genetic and environmental factors. We will outline how an epiallele has a variable relationship with phenotype, and how new technologies may be used for their detection and to facilitate an understanding of their contribution to phenotype. Finally, we will consider epialleles in population variation and their teleological role in evolution. variation and their teleological role in evolution.
    Environmental and Molecular Mutagenesis 01/2011; 52(1):1-11. DOI:10.1002/em.20590 · 2.55 Impact Factor
  • Source