Article

Anxiety-induced cognitive bias in non-human animals.

University of Bristol, Bristol, BS40 5DU, UK.
Physiology & Behavior (Impact Factor: 3.03). 07/2009; 98(3):345-50. DOI: 10.1016/j.physbeh.2009.06.012
Source: PubMed

ABSTRACT As in humans, 'cognitive biases' in the way in which animals judge ambiguous stimuli may be influenced by emotional state and hence a valuable new indicator of animal emotion. There is increasing evidence that animals experiencing different emotional states following exposure to long-term environmental manipulations show contrasting biases in their judgement of ambiguous stimuli. However, the specific type of induced emotional state is usually unknown. We investigated whether a short-term manipulation of emotional state has a similar effect on cognitive bias, using changes in light intensity; a treatment specifically related to anxiety-induction. Twenty-four male rats were trained to discriminate between two different locations, in either high ('H') or low ('L') light levels. One location was rewarded with palatable food and the other with aversive food. Once the rats had shown spatial discrimination, by running significantly faster to the rewarded location, they were tested with three ambiguous locations intermediate between the rewarded and aversive locations, and their latency to approach each location recorded. Half the rats were tested in the same light levels as during training, the remainder were switched. Rats switched from high to low light levels (putatively the least negative emotional manipulation) ran significantly faster to all three ambiguous probes than those rats switched from low to high light levels (putatively the most negative manipulation). This suggests that the judgement bias technique might be useful as an indicator of short-term changes in anxiety for non-human animals.

0 Bookmarks
 · 
188 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive bias, the altered information processing resulting from the background emotional state of an individual, has been suggested as a promising new indicator of animal emotion. Comparable to anxious or depressed humans, animals in a putatively negative emotional state are more likely to judge an ambiguous stimulus as if it predicts a negative event, than those in positive states. The present study aimed to establish a cognitive bias test for mice based on a spatial judgment task and to apply it in a pilot study to serotonin transporter (5-HTT) knockout mice, a well-established mouse model for the study of anxiety- and depression-related behavior. In a first step, we validated that our setup can assess different expectations about the outcome of an ambiguous stimulus: mice having learned to expect something positive within a maze differed significantly in their behavior towards an unfamiliar location than animals having learned to expect something negative. In a second step, the use of spatial location as a discriminatory stimulus was confirmed by showing that mice interpret an ambiguous stimulus depending on its spatial location, with a position exactly midway between a positive and a negative reference point provoking the highest level of ambiguity. Finally, the anxiety- and depression-like phenotype of the 5-HTT knockout mouse model manifested - comparable to human conditions - in a trend for a negatively distorted interpretation of ambiguous information, albeit this effect was not statistically significant. The results suggest that the present cognitive bias test provides a useful basis to study the emotional state in mice, which may not only increase the translational value of animal models in the study of human affective disorders, but which is also a central objective of animal welfare research.
    PLoS ONE 08/2014; 9(8):e105431. DOI:10.1371/journal.pone.0105431 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Normal anxiety is considered an adaptive response to the possible presence of danger, but it appears highly susceptible to dysregulation. Anxiety disorders are prevalent at high frequency in contemporary human societies, yet impose substantial disability upon their sufferers. This raises a puzzle: why has evolution left us vulnerable to anxiety disorders? We develop a signal detection model in which individuals must learn how to calibrate their anxiety responses: they need to learn which cues indicate danger in the environment. We study the optimal strategy for doing so, and find that individuals face an inevitable exploration-exploitation tradeoff between obtaining a better estimate of the level of risk on one hand, and maximizing current payoffs on the other. Because of this tradeoff, a subset of the population becomes trapped in a state of excessive and self-perpetuating anxiety, even when individuals learn optimally. This phenomenon arises because when individuals become too cautious, they stop sampling the environment and fail to correct their misperceptions, whereas when individuals become too careless they continue to sample the environment and soon discover their mistakes. We suggest that this process may be involved in the development of excessive anxiety in humans.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in animal welfare science used judgement bias, a type of cognitive bias, as a means to objectively measure an animal's affective state. It is postulated that animals showing heightened expectation of positive outcomes may be categorised optimistic, while those showing heightened expectations of negative outcomes may be considered pessimistic. This study pioneers the use of a portable, automated apparatus to train and test the judgement bias of dogs. Dogs were trained in a discrimination task in which they learned to touch a target after a tone associated with a lactose-free milk reward and abstain from touching the target after a tone associated with water. Their judgement bias was then probed by presenting tones between those learned in the discrimination task and measuring their latency to respond by touching the target. A Cox's Proportional Hazards model was used to analyse censored response latency data. Dog and Cue both had a highly significant effect on latency and risk of touching a target. This indicates that judgement bias both exists in dogs and differs between dogs. Test number also had a significant effect, indicating that dogs were less likely to touch the target over successive tests. Detailed examination of the response latencies revealed tipping points where average latency increased by 100% or more, giving an indication of where dogs began to treat ambiguous cues as predicting more negative outcomes than positive ones. Variability scores were calculated to provide an index of optimism using average latency and standard deviation at cues after the tipping point. The use of a mathematical approach to assessing judgement bias data in animal studies offers a more detailed interpretation than traditional statistical analyses. This study provides proof of concept for the use of an automated apparatus for measuring cognitive bias in dogs.
    PLoS ONE 09/2014; 9(9):e107794. DOI:10.1371/journal.pone.0107794 · 3.53 Impact Factor