Article

Monitoring of HIV-1 envelope-mediated membrane fusion using modified split green fluorescent proteins

China-Japan Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.
Journal of virological methods (Impact Factor: 1.88). 07/2009; 161(2):216-22. DOI: 10.1016/j.jviromet.2009.06.017
Source: PubMed

ABSTRACT A simple, cell-based, membrane fusion assay system that uses split green fluorescent proteins (spGFPs) as an indicator was developed. The attachment of the pleckstrin homology (PH) domain to the N-termini of each spGFP not only localized the reporter signal to the plasma membrane but also helped the stable expression of the smaller spGFP of seventeen amino acid residues. It was shown that this system allowed real-time monitoring of membrane fusion by HIV-1 envelope protein (Env) without the addition of external substrates. This method can be adapted to the analyses of other viral membrane fusion.

Download full-text

Full-text

Available from: Naoyuki Kondo, Jun 22, 2015
0 Followers
 · 
148 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: A dual split reporter protein system (DSP), recombining Renilla luciferase (RL) and green fluorescent protein (GFP) split into two different constructs (DSP1-7 and DSP8-11), was adapted to create a novel rapid phenotypic tropism assay (PTA) for HIV-1 infection (DSP-Pheno). Methods: DSP1-7 was stably expressed in the glioma-derived NP-2 cell lines, which expressed CD4/CXCR4 (N4X4) or CD4/CCR5 (N4R5), respectively. An expression vector with DSP8-11 (pRE11) was constructed. The HIV-1 envelope genes were subcloned in pRE11 (pRE11-env) and transfected into 293FT cells. Transfected 293FT cells were incubated with the indicator cell lines independently. In developing the assay, we selected the DSP1-7-positive clones that showed the highest GFP activity after complementation with DSP8-11. These cell lines, designated N4R5-DSP1-7, N4X4-DSP1-7 were used for subsequent assays. Results: The env gene from the reference strains (BaL for R5 virus, NL4-3 for X4 virus, SF2 for dual tropic virus) subcloned in pRE11 and tested, was concordant with the expected co-receptor usage. Assay results were available in two ways (RL or GFP). The assay sensitivity by RL activity was comparable with those of the published phenotypic assays using pseudovirus. The shortest turnaround time was 5 days after obtaining the patient's plasma. All clinical samples gave positive RL signals on R5 indicator cells in the fusion assay. Median RLU value of the low CD4 group was significantly higher on X4 indicator cells and suggested the presence of more dual or X4 tropic viruses in this group of patients. Comparison of representative samples with Geno2Pheno [co-receptor] assay was concordant. Conclusions: A new cell-fusion-based, high-throughput PTA for HIV-1, which would be suitable for in-house studies, was developed. Equipped with two-way reporter system, RL and GFP, DSP-Pheno is a sensitive test with short turnaround time. Although maintenance of cell lines and laboratory equipment is necessary, it provides a safe assay system without infectious viruses. With further validation against other conventional analyses, DSP-Pheno may prove to be a useful laboratory tool. The assay may be useful especially for the research on non-B subtype HIV-1 whose co-receptor usage has not been studied much.
    Journal of the International AIDS Society 09/2013; 16(1):18723. DOI:10.7448/IAS.16.1.18723 · 4.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: HIV-1 entry into cells is mediated by interactions between the envelope (Env) gp120 and gp41 proteins with CD4 and chemokine receptors via an intermediate called the viral fusion complex (vFC). Here, mAbs were used to find the dynamic changes in expression of antigenic epitopes during vFC formation. A CD4-specific mAb (R275) and anti-vFC mAbs, designated F12-1, F13-6 and F18-4 that recognize the epitopes only appeared by the co-culture of env-transfected 293FT and CD4-transfected 293 cells, were developed by immunizing ganp-gene transgenic mice with an vFC-like structure formed by the same co-culture. The epitopes recognized by the mAbs appeared at different time points during vFC formation: F18-4 appeared first, followed by F13-6, and finally F12-1. The anti-vFC mAbs had little effect on vFC formation or virus neutralization; however, interestingly F12-1 and F18-4 increased exposure of the OKT4-epitope on the domain 3 in the extracellular region of CD4. R275, which recognizes the epitope closely associated with the OKT4-determinant on the domain 3, showed the marked inhibition of vFC formation and viral neutralization activity. The Ab binding to the epitopes appeared during viral membrane fusion might reinforce the appearance of the target epitopes for effective neutralization activity.
    Immunobiology 12/2011; 217(9):864-72. DOI:10.1016/j.imbio.2011.12.007 · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To help understand the dynamic nature of membrane fusion induced by the human immunodeficiency virus-1 (HIV-1) envelope protein, we developed a new cell-based real-time assay system employing a pair of novel reporter proteins. The reporter proteins consist of a pair of split Renilla luciferase (spRL) fused to split green fluorescent protein (spGFP). The spGFP modules were chosen not only to compensate weak self-association of spRL but also to provide visual reporter signals during membrane fusion. Use of this reporter together with a membrane permeable substrate for Renilla luciferase achieved a simple real-time monitoring of membrane fusion using live cells. We analyzed the HIV-1 envelope mutants whose membrane-spanning domains were replaced with that of glycophorin A or vesicular stomatitis virus G-protein. These mutants showed a slower kinetics of membrane fusion. The analysis of membrane fusion in the presence of fusion inhibitors, soluble CD4 and C34, revealed that these replacements prolonged the period during which the mutants were sensitive to the inhibitors, as compared with the wild type. These results suggest that the mutations within the membrane-spanning domains exerted an allosteric effect on the HIV-1 envelope protein, probably affecting the receptor-induced conformational changes of the ectodomain of the protein.
    Journal of Biological Chemistry 03/2010; 285(19):14681-8. DOI:10.1074/jbc.M109.067090 · 4.60 Impact Factor