Development and evaluation of a novel multiple-antigen ELISA for serodiagnosis of tuberculosis

State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, No. 220 Handan Road, 200433 Shanghai, PR China.
Tuberculosis (Edinburgh, Scotland) (Impact Factor: 2.71). 07/2009; 89(4):278-84. DOI: 10.1016/
Source: PubMed


In this study, we describe the development and evaluation of a novel multiple-antigen ELISA for rapid diagnosis and screening of active tuberculosis (TB). The humoral immune responses of 136 active TB patients and 57 healthy subjects against antigens Rv3425, 38kDa and lipoarabinomannan (LAM) from Mycobacterium tuberculosis H37Rv were examined by ELISA. Three essential results were obtained. (i) Rv3425 antigen is a potential candidate for serodiagnosis of active TB. Of 136 active TB patients, Rv3425 antigen provided a sensitivity of 31.6%, lower than that of LAM antigen, but higher than that of 38kDa antigen, with an overall specificity of 100%. (ii) For 62 smear-negative pulmonary TB patients and 15 extra-pulmonary TB patients, the multiple-antigen test provided a sensitivity of 43.5% and 26.7%, respectively, representing an improvement over acid-fast bacilli (AFB) smear-based diagnosis. (iii) Compared with the single-antigen ELISA and the two available commercial kits, the multiple-antigen test offered the highest accuracy (71.0%). In conclusion, the multiple-antigen ELSIA test based on Rv3425, 38kDa, and LAM antigens is a potentially useful tool for the serodiagnosis and screening of active TB. Combinations of Rv3425 with other mycobacterial antigens may also be worthy of further investigation.

Download full-text


Available from: Jun-Wei Zhao, Oct 05, 2015
94 Reads
  • Source
    • "Our hypothesis relies on the heterogeneous humoral response to different antigens as the cause of the increased specificity of the assay (Zhang et al. 2009), in agreement with current guidelines for the diagnosis of infections involving an antibody response, thus suggesting the importance of having multiple antigens to define the antibody profile related to early diagnosis and follow-up of the specific illness (Steller et al. 2005; Sartain et al. 2006). Although further work is now needed to establish "
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: Several serological diagnostics rely on enzyme-linked immunosorbent assay (ELISA) to detect bacterial infections. However, for some pathogens, including Bartonella henselae, diagnosis still depends on manually intensive, time-consuming assays including micro-immunofluorescence, Western blotting or indirect immunofluorescence. For such pathogens, there is obviously still a need to identify antigens to establish a reliable, fast and high-throughput assay (Dupon et al. ). We evaluated two B. henselae proteins to develop a novel serological ELISA: a well-known antigen, the 17-kDa protein, and GroEL, identified during this study by a proteomic approach. When serum IgG were tested, the specificity and sensitivity were 76 and 65·7% for 17-kDa, respectively, and 82 and 42·9% for GroEL, respectively. IgM were found to be more sensitive and specific for both proteins: 17-kDa protein, specificity 86·2% and sensitivity 75%; GroEL, specificity 97·7% and sensitivity 45·3%. IgM antibodies were also measured in lymphoma patients and patients with Mycobacterium tuberculosis infection to assess the usefulness of our ELISA to distinguish them from B. henselae infected patients. The resulting specificities were 89·1 and 93·5% for 17-kDa protein and GroEL, respectively. Combining the results from the two tests, we obtained a sensitivity of 82·8% and a specificity of 83·9%. Our work described and validated a proteomic approach suitable to identify immunogenic proteins useful for developing a serological test of B. henselae infection. Significance and impact of the study: A reliable serological assay for the diagnosis of Cat Scratch Disease (CSD) - a pathological condition caused by Bartonella henselae infection - has not yet been developed. Such an assay would be extremely useful to discriminate between CSD and other pathologies with similar symptoms but different aetiologies, for example lymphoma or tuberculosis. We investigate the use of two B. henselae proteins - GroEL and 17-kDa - to develop a serological-based ELISA, showing promising results with the potential for further development as an effective tool for the differential diagnosing of B. henselae infection.
    Letters in Applied Microbiology 05/2014; 59(3). DOI:10.1111/lam.12286 · 1.66 Impact Factor
  • Source
    • "We have not found LAM to be a particularly good antigen for the study and diagnosis of TB in badgers using the ELISA format (unpublished work). The evaluation of LAM as a serodiagnostic antigen in human TB is also not encouraging, although sensitivity is improved if combined with other antigens (Zhang et al., 2009; Beyene et al., 2010). Assessment of different antigens, singly and in combination with animals in a single study, would be valuable. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The infection of both captive and free-ranging wildlife species with pathogenic mycobacteria (including Mycobacterium tuberculosis) poses a zoonotic risk and continues to cause challenges for the livestock industry, zoos and governments around the world. Central to the management and control of tuberculosis is timely and accurate diagnosis. In many cases, bacterial culture is insufficiently sensitive and confirmation of TB post-mortem is neither feasible nor desirable. In this context, there is still considerable research interest in, and need for, immunological methods for diagnosis. Reviews on this topic were published in 2005 and 2009, but since then veterinarians and other researchers have continued to evaluate immunodiagnostic approaches to TB. These include serological tests such as lateral-flow devices, and enzyme-linked immunosorbent assay (ELISA) and those based on evaluation of cell-mediated immunity, such as the tuberculin skin test and interferon-gamma release assay (IGRA). Since 2009, the range of publications on this topic has been extended to a number of new species, including South American camelids, black rhinoceros, lions and non-human primates. Therefore, it seemed appropriate to review the literature in the 3 years since 2009 and provide an overview of progress.
    Transboundary and Emerging Diseases 11/2013; 60(s1). DOI:10.1111/tbed.12094 · 2.94 Impact Factor
  • Source
    • "Briefly, each serum sample was considered positive if the mean absorbance was greater than the cut-off point. For the multiple-antigen ELISA results, single antigen ELISA data was re-evaluated and the serum tested was determined to be positive according to the following criteria: (1) any 2 or more antigens specifically react with serum with the absorbance greater than the cut-off value calculated from the mean absorbance (A405nm) plus 2 standard deviations of healthy controls or (2) any antigen that specifically reacts with serum when the cut-off value was calculated from the mean absorbance (A405nm) plus 3 standard deviations of healthy controls [25]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Burkholderia pseudomallei, the causative agent of melioidosis, is endemic to Southeast Asia and northern Australia. Clinical manifestations of disease are diverse, ranging from chronic infection to acute septicaemia. The current gold standard of diagnosis involves bacterial culture and identification which is time consuming and often too late for early medical intervention. Hence, rapid diagnosis of melioidosis is crucial for the successful management of melioidosis. Methods The study evaluated 4 purified B. pseudomallei recombinant proteins (TssD-5, Omp3, smBpF4 and Omp85) as potential diagnostic agents for melioidosis. A total of 68 sera samples from Malaysian melioidosis patients were screened for the presence of specific antibodies towards these proteins using enzyme-linked immunosorbent assay (ELISA). Sera from patients with various bacterial and viral infections but negative for B. pseudomallei, as well as sera from healthy individuals, were also included as non-melioidosis controls. The Mann Whitney test was performed to compare the statistical differences between melioidosis patients and the non-melioidosis controls. Results TssD-5 demonstrated the highest sensitivity of 71% followed by Omp3 (59%), smBpF4 (41%) and Omp85 (19%). All 4 antigens showed equally high specificity (89-96%). A cocktail of all 4 antigens resulted in slightly reduced sensitivity of 65% but improved specificity (99%). Multiple-antigen ELISA provided improved sensitivity of 88.2% whilst retaining good specificity (96%). There was minimal reactivity with sera from healthy individuals proposing the utility of these antigens to demarcate diseased from non-symptomatic individuals in an endemic country. Conclusions TssD-5 demonstrated high detection sensitivity and specificity and the results were obtained within a few hours compared to time consuming culture and IFAT methods commonly used in a clinical setting. The use of multiple-antigens resulted in improved sensitivity (88.2%) whilst maintaining superior specificity. These data highlight the use of TssD-5 and other recombinant antigens tested in this study as potential serodiagnostic agents for melioidosis.
    BMC Infectious Diseases 04/2013; 13(1):165. DOI:10.1186/1471-2334-13-165 · 2.61 Impact Factor
Show more