Inhomogeneous sodium accumulation in the ischemic core in rat focal cerebral ischemia by 23Na MRI.

Department of Anesthesiology, Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania 15212-4772, USA.
Journal of Magnetic Resonance Imaging (Impact Factor: 2.57). 06/2009; 30(1):18-24. DOI: 10.1002/jmri.21816
Source: PubMed

ABSTRACT To test the hypotheses that (i) the regional heterogeneity of brain sodium concentration ([Na(+)](br)) provides a parameter for ischemic progression not available from apparent diffusion coefficient (ADC) data, and (ii) [Na(+)](br) increases more in ischemic cortex than in the caudate putamen (CP) with its lesser collateral circulation after middle cerebral artery occlusion in the rat.
(23)Na twisted projection MRI was performed at 3 Tesla. [Na(+)](br) was independently determined by flame photometry. The ischemic core was localized by ADC, by microtubule-associated protein-2 immunohistochemistry, and by changes in surface reflectivity.
Within the ischemic core, the ADC ratio relative to the contralateral tissue was homogeneous (0.63 +/- 0.07), whereas the rate of [Na(+)](br) increase (slope) was heterogeneous (P < 0.005): 22 +/- 4%/h in the sites of maximum slope versus 14 +/- 1%/h elsewhere (here 100% is [Na(+)](br) in the contralateral brain). Maximum slopes in the cortex were higher than in CP (P < 0.05). In the ischemic regions, there was no slope/ADC correlation between animals and within the same brain (P > 0.1). Maximum slope was located at the periphery of ischemic core in 8/10 animals.
Unlike ADC, (23)Na MRI detected within-core ischemic lesion heterogeneity.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral edema forms in the early hours of ischemic stroke by processes involving increased transport of Na and Cl from blood into brain across an intact blood-brain barrier (BBB). Our previous studies provided evidence that the BBB Na-K-Cl cotransporter is stimulated by the ischemic factors hypoxia, aglycemia, and arginine vasopressin (AVP), and that inhibition of the cotransporter by intravenous bumetanide greatly reduces edema and infarct in rats subjected to permanent middle cerebral artery occlusion (pMCAO). More recently, we showed that BBB Na/H exchanger activity is also stimulated by hypoxia, aglycemia, and AVP. The present study was conducted to further investigate the possibility that a BBB Na/H exchanger also participates in edema formation during ischemic stroke. Sprague-Dawley rats were subjected to pMCAO and then brain edema and Na content assessed by magnetic resonance imaging diffusion-weighed imaging and magnetic resonance spectroscopy Na spectroscopy, respectively, for up to 210 minutes. We found that intravenous administration of the specific Na/H exchange inhibitor HOE-642 significantly decreased brain Na uptake and reduced cerebral edema, brain swelling, and infarct volume. These findings support the hypothesis that edema formation and brain Na uptake during the early hours of cerebral ischemia involve BBB Na/H exchanger activity as well as Na-K-Cl cotransporter activity.Journal of Cerebral Blood Flow & Metabolism advance online publication, 14 November 2012; doi:10.1038/jcbfm.2012.160.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 11/2012; · 5.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A technique for noninvasively quantifying the concentration of sodium ((23) Na) ions was applied to the study of ischemic stroke. (23) Na-magnetic resonance imaging techniques have shown considerable potential for measuring subtle changes in ischemic tissue, although studies to date have suffered primarily from poor signal/noise ratio. In this study, accurate quantification of tissue sodium concentration (TSC) was achieved in (23) Na images with voxel sizes of 1.2 μL acquired in 10 min. The evolution of TSC was investigated from 0.5 to 8 h in focal cortical and subcortical ischemic tissue following permanent middle cerebral artery occlusion in the rat (n = 5). Infarct volumes determined from TSC measurements correlated significantly with histology (P = 0.0006). A delayed linear model was fitted to the TSC time course data in each voxel, which revealed that the TSC increase was more immediate (0.2 ± 0.1 h delay time) in subcortical ischemic tissue, whereas it was delayed by 1.6 ± 0.5 h in ischemic cortex (P = 0.0002). No significant differences (P = 0.5) were measured between TSC slope rates in cortical (10.2 ± 1.1 mM/h) and subcortical (9.7 ± 1.1 mM/h) ischemic tissue. The data suggest that any TSC increase measured in ischemic tissue indicates infarction (core) and regions exhibiting a delay to TSC increase indicate potentially salvageable tissue (penumbra).
    Magnetic Resonance in Medicine 06/2011; 67(3):740-9. · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study addresses the spatial relation between local Na(+) and K(+) imbalances in the ischemic core in a rat model of focal ischemic stroke. Quantitative [Na(+)] and [K(+)] brain maps were obtained by (23)Na MRI and histochemical K(+) staining, respectively, and calibrated by emission flame photometry of the micropunch brain samples. Stroke location was verified by diffusion MRI, by changes in tissue surface reflectivity and by immunohistochemistry with microtubule-associated protein 2 antibody. Na(+) and K(+) distribution within the ischemic core was inhomogeneous, with the maximum [Na(+)] increase and [K(+)] decrease typically observed in peripheral regions of the ischemic core. The pattern of the [K(+)] decrease matched the maximum rate of [Na(+)] increase ('slope'). Some residual mismatch between the sites of maximum Na(+) and K(+) imbalances was attributed to the different channels and pathways involved in transport of the two ions. A linear regression of the [Na(+)]br vs. [K(+)]br in the samples of ischemic brain indicates that for each K(+) equivalent leaving ischemic tissue, 0.8±0.1 Eq, on average, of Na(+) enter the tissue. Better understanding of the mechanistic link between the Na(+) influx and K(+) egress would validate the (23)Na MRI slope as a candidate biomarker and a complementary tool for assessing ischemic damage and treatment planning.
    Brain research 06/2013; 1527:199-208. · 2.46 Impact Factor


Available from
May 23, 2014