Article

DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera

School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2009; 106(27):11206-11. DOI: 10.1073/pnas.0900301106
Source: PubMed

ABSTRACT The recent, unexpected discovery of a functional DNA methylation system in the genome of the social bee Apis mellifera underscores the potential importance of DNA methylation in invertebrates. The extent of genomic DNA methylation and its role in A. mellifera remain unknown, however. Here we show that genes in A. mellifera can be divided into 2 distinct classes, one with low-CpG dinucleotide content and the other with high-CpG dinucleotide content. This dichotomy is explained by the gradual depletion of CpG dinucleotides, a well-known consequence of DNA methylation. The loss of CpG dinucleotides associated with DNA methylation also may explain the unusual mutational patterns seen in A. mellifera that lead to AT-rich regions of the genome. A detailed investigation of this dichotomy implicates DNA methylation in A. mellifera development. High-CpG genes, which are predicted to be hypomethylated in germlines, are enriched with functions associated with developmental processes, whereas low-CpG genes, predicted to be hypermethylated in germlines, are enriched with functions associated with basic biological processes. Furthermore, genes more highly expressed in one caste than another are overrepresented among high-CpG genes. Our results highlight the potential significance of epigenetic modifications, such as DNA methylation, in developmental processes in social insects. In particular, the pervasiveness of DNA methylation in the genome of A. mellifera provides fertile ground for future studies of phenotypic plasticity and genomic imprinting.

Download full-text

Full-text

Available from: Brendan G Hunt, Jul 07, 2015
1 Follower
 · 
166 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Developmental plasticity allows for the remarkable morphological specialization of individuals into castes in eusocial species of Hymenoptera. Developmental trajectories that lead to alternative caste fates are typically determined by specific environmental stimuli that induce larvae to express and maintain distinct gene expression patterns. While most eusocial species express two castes, queens and workers, the ant Cardiocondyla obscurior expresses diphenic females and males; this provides a unique system with four discrete phenotypes to study the genomic basis of developmental plasticity in ants. We sequenced and analyzed the transcriptomes of 28 individual C. obscurior larvae of known developmental trajectory, providing the first in-depth analysis of gene expression in eusocial insect larvae. Clustering and transcription factor binding site analyses revealed that different transcription factors and functionally distinct sets of genes are recruited during larval development to induce the four alternative trajectories. In particular, we found complex patterns of gene regulation pertaining to sphingolipid metabolism, a conserved molecular pathway involved in development, obesity and aging. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
    Molecular Biology and Evolution 02/2015; 32(6). DOI:10.1093/molbev/msv039 · 14.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insects are one of the most successful classes on Earth, reflected in an enormous species richness and diversity. Arguably, this success is partly due to the high degree to which polyphenism, where one genotype gives rise to more than one phenotype, is exploited by many of its species. In social insects, for instance, larval diet influences the development into distinct castes; and locust polyphenism has tricked researchers for years into believing that the drastically different solitarious and gregarious phases might be different species. Solitarious locusts behave much as common grasshoppers. However, they are notorious for forming vast, devastating swarms upon crowding. These gregarious animals are shorter lived, less fecund and transmit their phase characteristics to their offspring. The behavioural gregarisation occurs within hours, yet the full display of gregarious characters takes several generations, as does the reversal to the solitarious phase. Hormones, neuropeptides and neurotransmitters influence some of the phase traits; however, none of the suggested mechanisms can account for all the observed differences, notably imprinting effects on longevity and fecundity. This is why, more recently, epigenetics has caught the interest of the polyphenism field. Accumulating evidence points towards a role for epigenetic regulation in locust phase polyphenism. This is corroborated in the economically important locust species Locusta migratoria and Schistocerca gregaria. Here, we review the key elements involved in phase transition in locusts and possible epigenetic regulation. We discuss the relative role of DNA methylation, histone modification and small RNA molecules, and suggest future research directions. © 2015. Published by The Company of Biologists Ltd.
    Journal of Experimental Biology 01/2015; 218(Pt 1):88-99. DOI:10.1242/jeb.107078 · 3.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In honey bees (Apis mellifera), the epigenetic mark of DNA methylation is central to the developmental regulation of caste differentiation, but may also be involved in additional biological functions. In this study, we examine the whole genome methylation profiles of three stages of the haploid honey bee genome: unfertilised eggs, the adult drones that develop from these eggs and the sperm produced by these drones. These methylomes reveal distinct patterns of methylation. Eggs and sperm show 381 genes with significantly different CpG methylation patterns, with the vast majority being more methylated in eggs. Adult drones show greatly reduced levels of methylation across the genome when compared with both gamete samples. This suggests a dynamic cycle of methylation loss and gain through the development of the drone and during spermatogenesis. Although fluxes in methylation during embryogenesis may account for some of the differentially methylated sites, the distinct methylation patterns at some genes suggest parent-specific epigenetic marking in the gametes. Extensive germ line methylation of some genes possibly explains the lower-than-expected frequency of CpG sites in these genes. We discuss the potential developmental and evolutionary implications of methylation in eggs and sperm in this eusocial insect species.
    Development 06/2014; 141(13):2702-11. DOI:10.1242/dev.110163 · 6.27 Impact Factor