Protein Kinase Cα, but Not PKCβ or PKCγ, Regulates Contractility and Heart Failure Susceptibility Implications for Ruboxistaurin as a Novel Therapeutic Approach

Children's Hospital Medical Center, Division of Molecular Cardiovascular Biology, 3333 Burnet Ave, University of Cincinnati, Cincinnati, OH 45229-3039, USA.
Circulation Research (Impact Factor: 11.09). 07/2009; 105(2):194-200. DOI: 10.1161/CIRCRESAHA.109.195313
Source: PubMed

ABSTRACT Protein kinase (PK)Calpha, PKCbeta, and PKCgamma comprise the conventional PKC isoform subfamily, which is thought to regulate cardiac disease responsiveness. Indeed, mice lacking the gene for PKCalpha show enhanced cardiac contractility and reduced susceptibility to heart failure. Recent data also suggest that inhibition of conventional PKC isoforms with Ro-32-0432 or Ro-31-8220 enhances heart function and antagonizes failure, although the isoform responsible for these effects is unknown. Here, we investigated mice lacking PKCalpha, PKCbeta, and PKCgamma for effects on cardiac contractility and heart failure susceptibility. PKCalpha(-/-) mice, but not PKCbetagamma(-/-) mice, showed increased cardiac contractility, myocyte cellular contractility, Ca(2+) transients, and sarcoplasmic reticulum Ca(2+) load. PKCalpha(-/-) mice were less susceptible to heart failure following long-term pressure-overload stimulation or 4 weeks after myocardial infarction injury, whereas PKCbetagamma(-/-) mice showed more severe failure. Infusion of ruboxistaurin (LY333531), an orally available PKCalpha/beta/gamma inhibitor, increased cardiac contractility in wild-type and PKCbetagamma(-/-) mice, but not in PKCalpha(-/-) mice. More importantly, ruboxistaurin prevented death in wild-type mice throughout 10 weeks of pressure-overload stimulation, reduced ventricular dilation, enhanced ventricular performance, reduced fibrosis, and reduced pulmonary edema comparable to or better than metoprolol treatment. Ruboxistaurin was also administered to PKCbetagamma(-/-) mice subjected to pressure overload, resulting in less death and heart failure, implicating PKCalpha as the primary target of this drug in mitigating heart disease. As an aside, PKCalphabetagamma triple-null mice showed no defect in cardiac hypertrophy following pressure-overload stimulation. In conclusion, PKCalpha functions distinctly from PKCbeta and PKCgamma in regulating cardiac contractility and heart failure, and broad-acting PKC inhibitors such as ruboxistaurin could represent a novel therapeutic approach in treating human heart failure.

Download full-text


Available from: Michael Leitges, Jul 03, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase C (PKC) regulates contractility of cardiac muscle cells by phosphorylating thin- and thick- filament-based proteins. Myocardial sarcomeres also contain a third myofilament, titin, and it is unknown whether titin can be phosphorylated by PKC and whether it affects passive tension. The purpose of this study was to examine the effect of PKC on titin phosphorylation and titin-based passive tension. Phosphorylation assays with PKCalpha revealed that titin is phosphorylated in skinned myocardial tissues; this effect is exacerbated by pretreating with protein phosphatase 1. In vitro phosphorylation of recombinant protein representing titin's spring elements showed that PKCalpha targets the proline - glutamate - valine - lysine (PEVK) spring element. Furthermore, mass spectrometry in combination with site-directed mutagenesis identified 2 highly conserved sites in the PEVK region that are phosphorylated by PKCalpha (S11878 and S12022); when these 2 sites are mutated to alanine, phosphorylation is effectively abolished. Mechanical experiments with skinned left ventricular myocardium revealed that PKCalpha significantly increases titin-based passive tension, an effect that is reversed by protein phosphatase 1. Single molecule force-extension curves show that PKCalpha decreases the PEVK persistence length (from 1.20 nm to 0.55 nm), without altering the contour length, and using a serially-linked wormlike chain model we show that this increases titin-based passive force with a sarcomere length dependence that is similar to that measured in skinned myocardium after PKCalpha phosphorylation. PKC phosphorylation of titin is a novel and conserved pathway that links myocardial signaling and myocardial stiffness.
    Circulation Research 09/2009; 105(7):631-8, 17 p following 638. DOI:10.1161/CIRCRESAHA.109.198465 · 11.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase Calpha (PKCalpha) is a member of the AGC (which includes PKD, PKG and PKC) family of serine/threonine protein kinases that is widely expressed in mammalian tissues. It is closely related in structure, function and regulation to other members of the protein kinase C family, but has specific functions within the tissues in which it is expressed. There is substantial recent evidence, from gene knockout studies in particular, that PKCalpha activity regulates cardiac contractility, atherogenesis, cancer and arterial thrombosis. Selective targeting of PKCalpha therefore has potential therapeutic value in a wide variety of disease states, although will be technically complicated by the ubiquitous expression and multiple functions of the molecule.
    Trends in Pharmacological Sciences 12/2009; 31(1):8-14. DOI:10.1016/ · 9.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase C-alpha (PKCalpha) was recently reported to increase myocardial stiffness, an effect that was proposed to be due to phosphorylation of two highly conserved sites (S11878 and S12022) within the proline-glutamic acid-valine-lysine (PEVK) rich spring element of titin. To test this proposal we investigated the effect of PKCalpha on phosphorylation and passive stiffness in a mouse model lacking the titin exons that contain these two phosphorylation sites, the PEVK knockout (KO). We used skinned, gelsolin-extracted, left ventricular myocardium from wildtype and PEVK KO mice. Consistent with previous work we found that PKCalpha increased passive stiffness in the WT myocardium by 27+/-6%. Importantly, this effect was completely abolished in KO myocardium. In addition, increases in the elastic and viscous moduli at a wide range of frequencies (properties important in diastolic filling) following PKCalpha incubation (27+/-3% and 20+/-4%, respectively) were also ablated in the KO. Back phosphorylation assays showed that titin phosphorylation following incubation with PKCalpha was significantly reduced by 36+/-12% in skinned PEVK KO myocardial tissues. The remaining phosphorylation in the KO suggests that PKCalpha sites exist in the titin molecule outside the PEVK region; these sites are not involved in increasing passive stiffness. Our results firmly support that the PEVK region of cardiac titin is phosphorylated by PKCalpha and that this increases passive tension. Thus, the PEVK spring element is the critical site of PKCalpha's involvement in passive myocardial stiffness.
    Journal of Molecular and Cellular Cardiology 12/2009; 48(5):972-8. DOI:10.1016/j.yjmcc.2009.12.006 · 5.22 Impact Factor