CD8 T-cell-mediated protection against liver-stage malaria: lessons from a mouse model

Department of Microbiology, University of Iowa Iowa, IA, USA
Frontiers in Microbiology (Impact Factor: 3.94). 06/2014; 5:272. DOI: 10.3389/fmicb.2014.00272
Source: PubMed

ABSTRACT Malaria is a major global health problem, with severe mortality in children living in sub-Saharan Africa, and there is currently no licensed, effective vaccine. However, vaccine-induced protection from Plasmodium infection, the causative agent of malaria, was established for humans in small clinical trials and for rodents in the 1960s. Soon after, a critical role for memory CD8 T cells in vaccine-induced protection against Plasmodium liver-stage infection was established in rodent models and is assumed to apply to humans. However, these seminal early studies have led to only modest advances over the ensuing years in our understanding the basic features of memory CD8 T cells required for protection against liver-stage Plasmodium infection, an issue which has likely impeded the development of effective vaccines for humans. Given the ethical and practical limitations in gaining mechanistic insight from human vaccine and challenge studies, animal models still have an important role in dissecting the basic parameters underlying memory CD8 T-cell immunity to Plasmodium. Here, we will highlight recent data from our own work in the mouse model of Plasmodium infection that identify quantitative and qualitative features of protective memory CD8 T-cell responses. Finally, these lessons will be discussed in the context of recent findings from clinical trials of vaccine-induced protection in controlled human challenge models.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria, caused by Plasmodium parasite infection, continues to be one of the leading causes of worldwide morbidity and mortality. Development of an effective vaccine has been encumbered by the complex life cycle of the parasite that has distinct pre-erythrocytic and erythrocytic stages of infection in the mammalian host. Historically, malaria vaccine development efforts have targeted each stage in isolation. An ideal vaccine, however, would target multiple life cycle stages with multiple arms of the immune system and be capable of eliminating initial infection in the liver, the subsequent blood stage infection, and would prevent further parasite transmission. We have previously shown that immunization of mice with Plasmodium yoelii genetically attenuated parasites (GAP) that arrest late in liver stage development elicits stage-transcending protection against both a sporozoite challenge and a direct blood stage challenge. Here, we show that this immunization strategy engenders both T- and B-cell responses that are essential for stage-transcending protection, but the relative importance of each is determined by the host genetic background. Furthermore, potent anti-blood stage antibodies elicited after GAP immunization rely heavily on FC-mediated functions including complement fixation and FC receptor binding. These protective antibodies recognize the merozoite surface but do not appear to recognize the immunodominant merozoite surface protein-1. The antigen(s) targeted by stage-transcending immunity are present in both the late liver stages and blood stage parasites. The data clearly show that GAP-engendered protective immune responses can target shared antigens of pre-erythrocytic and erythrocytic parasite life cycle stages. As such, this model constitutes a powerful tool to identify novel, protective and stage-transcending T and B cell targets for incorporation into a multi-stage subunit vaccine.
    PLoS Pathogens 05/2015; 11(5):e1004855. DOI:10.1371/journal.ppat.1004855 · 8.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple immunizations using live irradiated sporozoites, the infectious plasmodial stage delivered into the host skin during a mosquito bite, can elicit sterile immunity to malaria. CD8+ T cells seem to play an essential role in this protective immunity, since their depletion consistently abolishes sterilizing protection in several experimental models. So far, only a few parasite antigens are known to induce CD8+ T cell-dependent protection, but none of them can reach the levels of protection afforded by live attenuated parasites. Systematic attempts to identify novel antigens associated with this efficient cellular protection were so far unsuccessful. In addition, the precise mechanisms involved in the recognition and elimination of parasitized hepatocytes in vivo by CD8+ T cells still remain obscure. Recently, it has been shown that specific effector CD8+ T cells, after recognition of parasitized hepatocytes, recruit specific and non-specific activated CD8+ T cells to the site of infection, resulting in the formation of cellular clusters around and in the further elimination of intracellular parasites. The significance of this finding is discussed in the perspective of a general mechanism of antigen-dependent focalized inflammation and its consequences for the elimination of malaria liver stages.
    Frontiers in Microbiology 02/2015; 6. DOI:10.3389/fmicb.2015.00047 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the pre-erythrocytic asymptomatic phase of malarial infection, sporozoites develop transiently inside less than 100 hepatocytes that subsequently release thousands of merozoites. Killing of these hepatocytes by cytotoxic T cells (CTLs) confers protection to subsequent malarial infection, suggesting that this bottleneck phase in the parasite life cycle can be targeted by vaccination. During natural transmission, although some CTLs are generated in the skin draining lymph nodes, they are unable to eliminate the parasite, suggesting that the liver is important for the sporozoite to escape immune surveillance. The contribution of the organ to this process is unclear. Based on the known ability of several hepatic antigen-presenting cells (APCs) to induce primary activation of CD8 T cells and tolerance, malarial antigens presented by both infected hepatocytes and/or hepatic cross-presenting APCs should result in tolerance. However, our latest model predicts that due to the low frequency of infected hepatocytes, some T cells recognizing sporozoite epitopes with high affinity should differentiate into CTLs. In this review, we discuss two possible models to explain why CTLs generated in the liver and skin draining lymph nodes are unable to eliminate the parasite: 1) sporozoites harness the tolerogenic property of the liver; 2) CTLs are not tolerized but fail to detect infected cells due to sparse infection of hepatocytes and the very short liver stage. We propose that while malaria sporozoites might use the ability of the liver to tolerize both naive and effector cells, they have also developed strategies to decrease the probability of encounter between CTLs and infected liver cells. Thus, we predict that to promote protection, vaccination strategies should aim to boost intrahepatic activation and/or increase the chance of encounter between sporozoite-specific CTLs and infected hepatocytes.
    Frontiers in Microbiology 02/2015; 6:41. DOI:10.3389/fmicb.2015.00041 · 3.94 Impact Factor

Preview (2 Sources)

Available from