Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution

Optics Express (Impact Factor: 3.53). 01/2008; 15(25):16400-12. DOI: 10.1364/OE.15.016400
Source: PubMed

ABSTRACT We present 3D linear reconstructions of time-domain (TD) diffuse optical imaging differential data. We first compute the sensitivity matrix at different delay gates within the diffusion approximation for a homogeneous semi-infinite medium. The matrix is then inverted using spatially varying regularization. The performances of the method and the influence of a number of parameters are evaluated with simulated data and compared to continuous-wave (CW) imaging. In addition to the expected depth resolution provided by TD, we show improved lateral resolution and localization. The method is then applied to reconstructing phantom data consisting of an absorbing inclusion located at different depths within a scattering medium.


Available from: Juliette Selb, Apr 09, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffuse optical imaging is highly versatile and has a very broad range of applications in biology and medicine. It covers diffuse optical tomography, fluorescence diffuse optical tomography, bioluminescence, and a number of other new imaging methods. These methods of diffuse optical imaging have diversified instrument configurations but share the same core physical principle - light propagation in highly diffusive media, i.e., the biological tissue. In this review, the author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast.
    Photonics 03/2014; 1(1):9-32. DOI:10.3390/photonics1010009
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffuse optical tomography for medical applications can require probes with small dimensions involving short source-detector separations. Even though this configuration is seen at first as a constraint due to the challenge of depth sensitivity, we show here that it can potentially be an asset for spatial resolution in depth. By comparing two fiber optic probes on a test object, we first show with simulations that short source-detector separations improve the spatial resolution down to a limit depth. We then confirm these results in an experimental study with a state-of-the-art setup involving a fast-gated single-photon avalanche diode allowing maximum depth sensitivity. We conclude that short source-detector separations are an option to consider for the design of probes so as to improve image quality for diffuse optical tomography in reflectance.
    Biomedical Optics Express 01/2015; 6(1). DOI:10.1364/BOE.6.000001 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Finite difference time domain (FDTD) analysis has been formulated for predicting time-resolved reflectance from an adult head model with brain grooves containing a non-scattering layer. Mean delay (MD) dependences on source-detector separation (d) and time-resolved reflectance calculated using the FDTD analysis were compared with in vivo experiments of human heads. It is shown that the theoretical and experimental MD dependences on d and the time-resolved reflectance are well predicted by FDTD analysis. These results have shown that tomographic imaging of brain activities is promising, which improves depth sensitivities by enhancing the contribution of late photons in time-resolved systems.
    Proc. of SPIE, SanFrancisco; 02/2014