Article

Assessment of sensory function in the National Social Life, Health, and Aging Project.

Department of Health Studies, University of Chicago, 4841 South Maryland Avenue MC2007, Chicago, IL 40437, USA.
The Journals of Gerontology Series B Psychological Sciences and Social Sciences (Impact Factor: 3.01). 07/2009; 64 Suppl 1:i76-85. DOI: 10.1093/geronb/gbp048
Source: PubMed

ABSTRACT The National Social Life, Health, and Aging Project assessed functioning of all 5 senses using both self-report and objective measures. We evaluate the performance of the objective measures and model differences in sensory function by gender and age. In the process, we demonstrate how to use and interpret these measures.
Distance vision was assessed using a standard Sloan eye chart, and touch was measured using a stationary 2-point discrimination test applied to the index fingertip of the dominant hand. Olfactory function (both intensity detection and odor identification) was assessed using odorants administered via felt-tip pens. Gustatory function was measured via identification of four taste strips.
The performance of the objective measures was similar to that reported for previous studies, as was the relationship between sensory function and both gender and age.
Sensory function is important in studies of aging and health both because it is an important health outcome and also because a decline in functioning can be symptomatic of or predict other health conditions. Although the objective measures provide considerably more precision than the self-report items, the latter can be valuable for imputation of missing data and for understanding differences in how older adults perceive their own sensory ability.

0 Bookmarks
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prediction of mortality has focused on disease and frailty, although antecedent biomarkers may herald broad physiological decline. Olfaction, an ancestral chemical system, is a strong candidate biomarker because it is linked to diverse physiological processes. We sought to determine if olfactory dysfunction is a harbinger of 5-year mortality in the National Social Life, Health and Aging Project [NSHAP], a nationally representative sample of older U.S. adults. 3,005 community-dwelling adults aged 57-85 were studied in 2005-6 (Wave 1) and their mortality determined in 2010-11 (Wave 2). Olfactory dysfunction, determined objectively at Wave 1, was used to estimate the odds of 5-year, all cause mortality via logistic regression, controlling for demographics and health factors. Mortality for anosmic older adults was four times that of normosmic individuals while hyposmic individuals had intermediate mortality (p<0.001), a "dose-dependent" effect present across the age range. In a comprehensive model that included potential confounding factors, anosmic older adults had over three times the odds of death compared to normosmic individuals (OR, 3.37 [95%CI 2.04, 5.57]), higher than and independent of known leading causes of death, and did not result from the following mechanisms: nutrition, cognitive function, mental health, smoking and alcohol abuse or frailty. Olfactory function is thus one of the strongest predictors of 5-year mortality and may serve as a bellwether for slowed cellular regeneration or as a marker of cumulative toxic environmental exposures. This finding provides clues for pinpointing an underlying mechanism related to a fundamental component of the aging process.
    PLoS ONE 10/2014; 9(10):e107541. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Decreased olfactory function is very common in the older population, being present in over half of those between the ages of 65 and 80 years and in over three quarters of those over the age of 80 years. Such dysfunction significantly influences physical well-being and quality of life, nutrition, the enjoyment of food, as well as everyday safety. Indeed a disproportionate number of the elderly die in accident gas poisonings each year. As described in this review, multiple factors contribute to such age-related loss, including altered nasal engorgement, increased propensity for nasal disease, cumulative damage to the olfactory epithelium from viral and other environmental insults, decrements in mucosal metabolizing enzymes, ossification of cribriform plate foramina, loss of selectivity of receptor cells to odorants, changes in neurotransmitter and neuromodulator systems, and neuronal expression of aberrant proteins associated with neurodegenerative disease. It is now well established that decreased smell loss can be an early sign of such neurodegenerative diseases as Alzheimer's disease and sporadic Parkinson's disease. In this review we provide an overview of the anatomy and physiology of the aging olfactory system, how this system is clinically evaluated, and the multiple pathophysiological factors that are associated with its dysfunction.
    Frontiers in Psychology 01/2014; 5:20. · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progressive neuronal deterioration accompanied by sensory functions decline is typically observed during aging. On the other hand, structural or functional alterations of specific sensory neurons extend lifespan in the nematode C. elegans. Hormesis is a phenomenon by which the body benefits from moderate stress of various kinds which at high doses are harmful. Several studies indicate that different stressors can hormetically extend lifespan in C. elegans and suggest that hormetic effects could be exploited as a strategy to slow down aging and the development of age-associated (neuronal) diseases in humans. Mitochondria play a central role in the aging process and hormetic-like bimodal dose-response effects on C. elegans lifespan have been observed following different levels of mitochondrial stress. Here we tested the hypothesis that mitochondrial stress may hormetically extends C. elegans lifespan through subtle neuronal alterations. In support of our hypothesis we find that life-lengthening dose of mitochondrial stress reduces the functionality of a subset of ciliated sensory neurons in young animals. Notably, the same pro-longevity mitochondrial treatments rescue the sensory deficits in old animals. We also show that mitochondrial stress extends C. elegans lifespan acting in part through genes required for the functionality of those neurons. To our knowledge this is the first study describing a direct causal connection between sensory neuron dysfunction and extended longevity following mitochondrial stress. Our work supports the potential anti-aging effect of neuronal hormesis and open interesting possibility for the development of therapeutic strategy for age-associated neurodegenerative disorders.
    Experimental gerontology 04/2014; · 3.34 Impact Factor

Full-text (2 Sources)

Download
40 Downloads
Available from
Jun 1, 2014