Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper.

Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
Physiological Genomics (Impact Factor: 2.81). 07/2009; 38(3):386-401. DOI: 10.1152/physiolgenomics.00083.2009
Source: PubMed

ABSTRACT Copper is an essential trace element; however, at supraphysiological levels, it can be extremely toxic. Microarray data from HepG2 cells exposed to 100, 200, 400, and 600 microM copper for 4, 8, 12 and 24 h were generated and analyzed. Principal components, K-means, and hierarchical clustering, interactome, and pathway mapping analyses indicated that these exposure conditions induce physiological and toxicological changes in the HepG2 transcriptome. As a general trend, when the level of toxicity increases, the number and diversity of affected genes, Gene Ontology categories, regulatory pathways, and complexity of interactomes increase. Physiological responses to copper include transition metal ion binding and responses to stress/stimulus, whereas toxicological responses include apoptosis, morphogenesis, and negative regulation of biomolecule metabolism. The global gene expression profile was overlaid onto biomolecular interaction networks and signal transduction cascades using pathway mapping and interactome identification. This analysis indicated that copper modulates signal transduction pathways associated with MAPK, NF-kappaB, death receptor, IGF-I, hypoxia, IL-10, IL-2, IL-6, EGF, Toll-like receptor, protein ubiquitination, xenobiotic metabolism, leukocyte extravasation, complement and coagulation, and sonic hedgehog signaling. These results provide insights into the global and molecular mechanisms regulating the physiological and toxicological responses to metal exposure.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Copper is an essential micronutrient for organism health. Dietary changes or pathologies linked to this metal induce changes in intracellular glutathione concentrations. Here, we studied the transcriptional activation of glutathione pathways in Jurkat cell lines, analyzing the effect of change in glucose homeostasis during a physiological and supra-physiological copper exposure. An immortalized line of human T lymphocyte cell line (Jurkat) was exposed to different copper and glucose conditions to mimic concentrations present in human blood. We applied treatments for 6 (acute) and 24 h (sustained) to 2 µM (physiological) or 20 µM (supra-physiological, Wilson disease scenario) of CuSO4 in combination with 25 mg/dL (hypoglycemia), 100 mg/dL (normal) and 200 mg/dL (hyperglycemia, diabetes scenario) of glucose. The results indicate that a physiological concentration of copper exposure does not induce transcriptional changes in the glutathione synthesis pathway after 6 or 24 h. The G6PDH gene (regeneration pathway), however, is induced during a supra-physiological copper condition. This data was correlated with the viability assays, where fluctuation in both glucose conditions (hypo and hyperglycemia scenario) affected Jurkat proliferation when 20 µM of CuSO4 was added to the culture media. Under a copper overload condition, the transcription of a component of glutathione regeneration pathway (G6PDH gene) is activated in cells chronically exposed to a hyperglycemia scenario, indicating that fluctuations in glucose concentration impact the resistance against the metal. Our findings illustrate the importance of glucose homeostasis during copper excess.
    BioMetals 02/2015; 28(2). DOI:10.1007/s10534-015-9834-z · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antioxidant enzymes play a major role in defending against oxidative damage by copper. However, few studies have been performed to determine which antioxidant enzymes respond to and are necessary for copper detoxification. In this study, we examined both the activities and mRNA levels of SOD, CAT, and GPX under excessive copper stress in Caenorhabditis elegans, which is a powerful model for toxicity studies. Then, taking advantage of the genetics of this model, we assessed the lethal concentration (LC50) values of copper for related mutant strains. The results showed that the SOD, CAT, and GPX activities were significantly greater in treated groups than in controls. The mRNA levels of sod-3, sod-5, ctl-1, ctl-2, and almost all gpx genes were also significantly greater in treated groups than in controls. Among tested mutants, the sod-5, ctl-1, gpx-3, gpx-4, and gpx-6 variants exhibited hypersensitivity to copper. The strains with SOD or CAT over expression were reduced sensitive to copper. Mutations in daf-2 and age-1, which are involved in the insulin/insulin-like growth factor-1 signaling pathway, result in reduced sensitivity to stress. Here, we showed that LC50 values for copper in daf-2 and age-1 mutants were significantly greater than in N2 worms. However, the LC50 values in daf-16;daf-2 and daf-16;age-1 mutants were significantly reduced than in daf-2 and age-1 mutants, implying that reduced copper sensitivity is influenced by DAF-16-related functioning. SOD, CAT, and GPX activities and the mRNA levels of the associated copper responsive genes were significantly increased in daf-2 and age-1 mutants compared to N2. Additionally, the activities of SOD, CAT, and GPX were greater in these mutants than in N2 when treated with copper. Our results not only support the theory that antioxidant enzymes play an important role in copper detoxification but also identify the response and the genes involved in these processes.
    PLoS ONE 09/2014; 9(9):e107685. DOI:10.1371/journal.pone.0107685 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental health risk assessors are challenged to understand and incorporate new data streams as the field of toxicology continues to adopt new molecular and systems biology technologies. Systematic screening reviews can help risk assessors and assessment teams determine which studies to consider for inclusion in a human health assessment. A tool for systematic reviews should be standardized and transparent in order to consistently determine which studies meet minimum quality criteria prior to performing in-depth analyses of the data. The Systematic Omics Analysis Review (SOAR) tool is focused on assisting risk assessment support teams in performing systematic reviews of transcriptomic studies. SOAR is a spreadsheet tool of 35 objective questions developed by domain experts, focused on transcriptomic microarray studies, and including four main topics: test system, test substance, experimental design, and microarray data. The tool will be used as a guide to identify studies that meet basic published quality criteria, such as those defined by the Minimum Information About a Microarray Experiment standard and the Toxicological Data Reliability Assessment Tool. Seven scientists were recruited to test the tool by using it to independently rate 15 published manuscripts that study chemical exposures with microarrays. Using their feedback, questions were weighted based on importance of the information and a suitability cutoff was set for each of the four topic sections. The final validation resulted in 100% agreement between the users on four separate manuscripts, showing that the SOAR tool may be used to facilitate the standardized and transparent screening of microarray literature for environmental human health risk assessment.
    PLoS ONE 12/2014; 9(12):e110379. DOI:10.1371/journal.pone.0110379 · 3.53 Impact Factor


1 Download
Available from