Article

Activation of p38 mitogen-activated protein kinase drives dendritic cells to become tolerogenic in ret transgenic mice spontaneously developing melanoma.

Skin Cancer Unit, German Cancer Research Center and University Hospital Mannheim, Heidelberg, Germany.
Clinical Cancer Research (Impact Factor: 7.84). 07/2009; 15(13):4382-90. DOI: 10.1158/1078-0432.CCR-09-0399
Source: PubMed

ABSTRACT The purpose of the study was to investigate signaling molecules involved in the acquisition of tolerogenic properties by dendritic cells (DC) in ret transgenic mice with spontaneous melanoma progression and to target these molecules to overcome the barrier for effective melanoma immunotherapy.
DC functions and expression patterns of p38 mitogen-activated protein kinase (MAPK) in DCs were evaluated in a ret transgenic murine cutaneous melanoma model, which shows high similarity to human cutaneous melanoma with respect to clinical development. In contrast to transplantation melanoma models (like B16), this model allows the study of melanoma progression under conditions of natural interactions between tumor and host cells over time.
We showed a strong tumor infiltration with immature DCs and a reduction in the number of mature DCs in lymphoid organs during melanoma progression. DCs from melanoma-bearing mice secreted significantly more interleukin 10 and less interleukin 12p70, and showed a decreased capacity to activate T cells compared with DCs from tumor-free animals. Observed DC dysfunction was linked to considerable activation of p38 MAPK. Inhibition of its activity in spleen DCs from tumor-bearing mice led to normalization of their cytokine secretion pattern and T-cell stimulation capacity.
Our data show a critical role of constitutively activated p38 MAPK in the acquirement of tolerogenic pattern by DCs during melanoma progression that contributes to the suppression of antitumor T-cell immune responses. We suggest that new strategies of melanoma immunotherapy can include inhibitors of p38 MAPK activity in DCs.

0 Bookmarks
 · 
150 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Costimulatory surface molecules and instructive cytokines expressed by dendritic cells (DCs) determine the outcome of an immune response. In malignant disease, DCs are often functionally compromised. In most tumors studied so far, the deficient induction of effective T cell responses has been associated with a blockade of DC maturation, but little has been known on DCs infiltrating malignant B cell lymphoma. Here, we investigated for the first time the phenotypic and functional status of DCs in B cell lymphoma, and we analyzed the network of DCs, tumor cells, natural killer (NK) cells and cytokines present in the tumor micromilieu. Therefor, we used an endogenous myc-transgenic mouse lymphoma model, because transplanted tumor cells foster an IFN-γ-driven Th1 antitumor response rather than an immunosuppressive environment, which is observed in autochthonous neoplasias. Lymphoma-infiltrating DCs showed a mature phenotype and a Th2-inducing cytokine pattern. This situation is in contrast to most human malignancies and mouse models described. Cellular contacts between DCs and tumor cells, which involved CD62L on the lymphoma, caused upregulation of costimulatory molecules, whereas IL-10 primarily derived from lymphoma cells induced an IL-12/IL-10 shift in DCs. Thus, alteration of costimulatory molecules and instructive cytokines was mediated by distinct mechanisms. Normal NK cells were able to additionally modulate DC maturation but this effect was absent in the lymphoma environment where IFN-γ production by NK cells was severely impaired. These data are relevant for establishing novel immunotherapeutic approaches against B cell lymphoma.
    Cancer Immunology and Immunotherapy 03/2014; · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The antitumor effects of paclitaxel are generally attributed to the suppression of microtubule dynamics resulting in defects in cell division. New data demonstrated that in ultralow noncytotoxic concentrations, paclitaxel modulated in immune cells in vitro the activity of small Rho GTPases, the key regulators of intracellular actin dynamics. However, the immunomodulatory properties of paclitaxel in vivo have not been evaluated. In this study, using the ret transgenic murine melanoma model, which mimics human cutaneous melanoma, we tested effects of ultralow noncytotoxic dose paclitaxel on functions of myeloid-derived suppressor cells (MDSCs), chronic inflammatory mediators, and T cell activities in the tumor microenvironment in vivo. Administration of paclitaxel significantly decreased accumulation and immunosuppressive activities of tumor-infiltrating MDSCs without alterations of the bone marrow hematopoiesis. This was associated with the inhibition of p38 MAPK activity, TNF-α and production, and S100A9 expression in MDSCs. The production of mediators of chronic inflammation in the tumor milieu also was diminished. Importantly, reduced tumor burden and increased animal survival upon paclitaxel application was mediated by the restoration of CD8 T cell effector functions. We suggest that the ability of paclitaxel in a noncytotoxic dose to block the immunosuppressive potential of MDSCs in vivo represents a new therapeutic strategy to downregulate immunosuppression and chronic inflammation in the tumor microenvironment for enhancing the efficacy of concomitant anticancer therapies.
    The Journal of Immunology 01/2013; · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ret transgenic mouse model of skin malignant melanoma is characterized by the overexpression of the human ret transgene in melanin containing cells. Transgenic mice spontaneously develop skin tumors with metastases in lymph nodes, lungs, liver, brain, and the bone marrow. Tumor lesions show typical melanoma morphology and express melanoma-associated antigens. Although transgenic mice demonstrate an accumulation of melanoma antigen-specific memory and effector T cells, their anti-tumor effects could be blocked by highly immunosuppressive leukocytes enriched in the tumor microenvironment and in the periphery. Here we discus the role of one of the most potent immunosuppressive subset, regulatory T cells, in the melanoma progression in this model. This article is protected by copyright. All rights reserved.
    Pigment Cell & Melanoma Research 04/2013; · 5.84 Impact Factor

Full-text

View
17 Downloads
Available from
May 15, 2014

Similar Publications