Article

Single cell RNA Seq reveals dynamic paracrine control of cellular variation

Nature (Impact Factor: 42.35). 06/2014; 510(7505). DOI: 10.1038/nature13437
Source: PubMed

ABSTRACT High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript's level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a 'core' module of antiviral genes is expressed very early by a few 'precocious' cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced 'peaked' inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses.

0 Followers
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomics and genetics have invaded all aspects of biology and medicine, opening uncharted territory for scientific exploration. The definition of "gene" itself has become ambiguous, and the central dogma is continuously being revised and expanded. Computational biology and computational medicine are no longer intellectual domains of the chosen few. Next generation sequencing (NGS) technology, together with novel methods of pattern recognition and network analyses, has revolutionized the way we think about fundamental biological mechanisms and cellular pathways. In this review, we discuss NGS-based genome-wide approaches that can provide deeper insights into retinal development, aging and disease pathogenesis. We first focus on gene regulatory networks (GRNs) that govern the differentiation of retinal photoreceptors and modulate adaptive response during aging. Then, we discuss NGS technology in the context of retinal disease and develop a vision for therapies based on network biology. We should emphasize that basic strategies for network construction and analyses can be transported to any tissue or cell type. We believe that specific and uniform guidelines are required for generation of genome, transcriptome and epigenome data to facilitate comparative analysis and integration of multi-dimensional data sets, and for constructing networks underlying complex biological processes. As cellular homeostasis and organismal survival are dependent on gene-gene and gene-environment interactions, we believe that network-based biology will provide the foundation for deciphering disease mechanisms and discovering novel drug targets for retinal neurodegenerative diseases. Copyright © 2015. Published by Elsevier Ltd.
    Progress in Retinal and Eye Research 02/2015; DOI:10.1016/j.preteyeres.2015.01.005 · 9.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Noise in gene expression renders cells more adaptable to changing environment by imposing phenotypic and functional heterogeneity on genetically identical individual cells. Hence, quantitative measurement of noise in gene expression is essential for the study of biological processes in cells. Currently, there are two complementary methods for quantitatively measuring noise in gene expression at the single cell level: single molecule FISH (smFISH) and single cell qRT-PCR (or single cell RNA-seq). While smFISH has been developed for culture cells, tissue sections and whole-mount invertebrate organisms, the method has not been reported for whole-mount vertebrate organisms. Here, we report an smFISH method that is suitable for whole-mount zebrafish embryo, a popular vertebrate model organism for the studies of development, physiology and disease. We show the detection of individual transcripts for several cell-type specific and ubiquitously expressed genes at the single cell level in whole-mount zebrafish embryo. We also demonstrate that the method can be adapted to detect two different genes in individual cells simultaneously. The whole-mount smFISH method described in this report is expected to facilitate the study of noise in gene expression and its role in zebrafish, a vertebrate animal model relevant to human biology.
    Scientific Reports 02/2015; 5:8571. DOI:10.1038/srep08571 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The expression of food-anticipatory activity (FAA) is induced by restricted feeding (RF), and its entrainment requires food-entrainable oscillators, the neuroanatomical basis of which is currently unclear. Although RF impacts various hormones, sex-related differences in FAA are unclear. Here, we report significantly more food anticipatory wheel-running activity in male than in female mice during RF. In parallel with the sex-related difference in FAA, male and female mice display different food intake and body weight in response to RF. Since gonadal hormones could be involved in the sex-specific difference in FAA, we compared sham and gonadectomized male and female wild-type mice. In gonadectomized mice, the sex difference in FAA was abolished, indicating a role for gonadal hormones in FAA. Further, plasma concentrations of the hormone ghrelin were higher in female than in male mice during ad libitum (AL) feeding, and RF induced a temporal advance in its peak in both sexes. RF also shifted the expression peak of the circadian gene mPer1 in the hippocampus and liver, although no sex difference was found in either the level or the cyclic phase of its expression. Per1(Brdm1) mutant mice were still sexually dimorphic for FAA, but diminished FAA was noted in both male and female Per2(Brdm1) mutant mice. In summary, our results imply that gonadal hormones contribute to the sex difference in FAA, possibly through modulating ghrelin activity. Copyright © 2015. Published by Elsevier Inc.
    Hormones and Behavior 02/2015; 16. DOI:10.1016/j.yhbeh.2015.02.004 · 4.51 Impact Factor

Preview (2 Sources)

Download
6 Downloads
Available from