A Boost of BMP4 Accelerates the Commitment of Human Embryonic Stem Cells to the Endothelial Lineage

INSERM U972, Villejuif, France.
Stem Cells (Impact Factor: 6.52). 08/2009; 27(8):1750-9. DOI: 10.1002/stem.100
Source: PubMed


Embryoid bodies (EBs) generated during differentiation of human embryonic stem cells (hESCs) contain vascular-like structures, suggesting that commitment of mesoderm progenitors into endothelial cells occurs spontaneously. We showed that bone morphogenetic protein 4 (BMP4), an inducer of mesoderm, accelerates the peak expression of CD133/kinase insert domain-containing receptor (KDR) and CD144/KDR. Because the CD133(+)KDR(+) population could represent endothelial progenitors, we sorted them at day 7 and cultured them in endothelial medium. These cells were, however, unable to differentiate into endothelial cells. Under standard conditions, the CD144(+)KDR(+) population represents up to 10% of the total cells at day 12. In culture, these cells, if sorted, give rise to a homogeneous population with a morphology typical of endothelial cells and express endothelial markers. These endothelial cells derived from the day 12 sorted population were functional, as assessed by different in vitro assays. When EBs were stimulated by BMP4, the CD144(+)KDR(+) peak was shifted to day 7. Most of these cells, however, were CD31(-), becoming CD31(+) in culture. They then expressed von Willebrand factor and were functional. This suggests that, initially, the BMP4-boosted day 7, CD144(+)KDR(+)CD31(-) population represents immature endothelial cells that differentiate into mature endothelial cells in culture. The expression of OCT3/4, a marker of immaturity for hESCs decreases during EB differentiation, decreasing faster following BMP4 induction. We also show that BMP4 inhibits the global expression of GATA2 and RUNX1, two transcription factors involved in hemangioblast formation, at day 7 and day 12.

Download full-text


Available from: Olivier Féraud, May 29, 2015
25 Reads
  • Source
    • "We performed four well-established in vitro EC functional assays (Goldman et al., 2009) to evaluate and compare functionality of the purified K+C+ ECs generated from hESC-derived endoderm cells to primary human umbilical vascular ECs (HUVECs). K+C+ cells behaved similarly to HUVECs in all assays. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Organogenesis requires expansion of the embryonic vascular plexus that migrates into developing organs through a process called angiogenesis. Mesodermal progenitors are thought to derive endothelial cells (ECs) that contribute to both embryonic vasculogenesis and the subsequent organ angiogenesis. Here, we demonstrate that during development of the liver, which is an endoderm derivative, a subset of ECs is generated from FOXA2+ endoderm-derived fetal hepatoblast progenitor cells expressing KDR (VEGFR2/FLK-1). Using human and mouse embryonic stem cell models, we demonstrate that KDR+FOXA2+ endoderm cells developing in hepatic differentiation cultures generate functional ECs. This introduces the concept that ECs originate not exclusively from mesoderm but also from endoderm, supported in Foxa2 lineage-tracing mouse embryos by the identification of FOXA2+ cell-derived CD31+ ECs that integrate the vascular network of developing fetal livers.
    Stem Cell Reports 10/2014; 3(4). DOI:10.1016/j.stemcr.2014.08.009 · 5.37 Impact Factor
  • Source
    • "hPSCs exhibit multi-lineage potential and the ability to self-renew indefinitely3,4, and constitute a promising source for the production of endothelial lineage cells, including EPs and ECs. However, protocols for robust differentiation of hPSCs into large numbers of functional endothelial lineage cells have been elusive6,7,8,9, largely due to an incomplete understanding of the specific developmental stimuli controlling the specification of mesodermal precursors into endothelial lineage cells17,53,54. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Human pluripotent stem cell (hPSC)-derived endothelial lineage cells constitutes a promising source for therapeutic revascularization, but progress in this arena has been hampered by a lack of clinically-scalable differentiation protocols and inefficient formation of a functional vessel network integrating with the host circulation upon transplantation. Using a human embryonic stem cell reporter cell line, where green fluorescent protein expression is driven by an endothelial cell-specific VE-cadherin (VEC) promoter, we screened for > 60 bioactive small molecules that would promote endothelial differentiation, and found that administration of BMP4 and a GSK-3β inhibitor in an early phase and treatment with VEGF-A and inhibition of the Notch signaling pathway in a later phase led to efficient differentiation of hPSCs to the endothelial lineage within six days. This sequential approach generated > 50% conversion of hPSCs to endothelial cells (ECs), specifically VEC(+)CD31(+)CD34(+)CD14(-)KDR(high) endothelial progenitors (EPs) that exhibited higher angiogenic and clonogenic proliferation potential among endothelial lineage cells. Pharmaceutical inhibition or genetical knockdown of Notch signaling, in combination with VEGF-A treatment, resulted in efficient formation of EPs via KDR(+) mesodermal precursors and blockade of the conversion of EPs to mature ECs. The generated EPs successfully formed functional capillary vessels in vivo with anastomosis to the host vessels when transplanted into immunocompromised mice. Manipulation of this VEGF-A-Notch signaling circuit in our protocol leads to rapid large-scale production of the hPSC-derived EPs by 12- to 20-fold vs current methods, which may serve as an attractive cell population for regenerative vascularization with superior vessel forming capability compared to mature ECs.Cell Research advance online publication 9 May 2014; doi:10.1038/cr.2014.59.
    Cell Research 05/2014; 24(7). DOI:10.1038/cr.2014.59 · 12.41 Impact Factor
  • Source
    • "BMP-4 is part of the transforming growth factor-beta superfamily and plays a crucial role in the commitment of pluripotent stem cells into mesoderm lineage and following that to the hematopoietic and endothelial lineages. It was previously shown that exposure of pluripotent stem cells to a short BMP-4 treatment induces EC differentiation [18] and hence we have incorporated a short induction of high dosage of BMP-4 in our differentiation protocol. VEGF on the other hand is a widely known key growth factor involved in the development of ECs in vivo, it thus used for robust differentiation toward EC lineage [19] [20] [21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Human induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs) are promising for treatment of vascular diseases. However, hiPSC-ECs purified based on CD31 expression are comprised of arterial, venous, and lymphatic subtypes. It is unclear whether hiPSC-ECs are heterogeneous in nature, and whether there may be functional benefits of enriching for specific subtypes. Therefore, we sought to characterize the hiPSC-ECs and enrich for each subtype, and demonstrate whether such enrichment would have functional significance. The hiPSC-ECs were generated from differentiation of hiPSCs using vascular endothelial growth factor (VEGF)-A and bone morphogenetic protein-4. The hiPSC-ECs were purified based on positive expression of CD31. Subsequently, we sought to enrich for each subtype. Arterial hiPSC-ECs were induced using higher concentrations of VEGF-A and 8-bromoadenosine-3':5'-cyclic monophosphate in the media, whereas lower concentrations of VEGF-A favored venous subtype. VEGF-C and angiopoietin-1 promoted the expression of lymphatic phenotype. Upon FACS purification based on CD31+ expression, the hiPSC-EC population was observed to display typical endothelial surface markers and functions. However, the hiPSC-EC population was heterogeneous in that they displayed arterial, venous, and to a lesser degree, lymphatic lineage markers. Upon comparing vascular formation in matrigel plugs in vivo, we observed that arterial enriched hiPSC-ECs formed a more extensive capillary network in this model, by comparison to a heterogeneous population of hiPSC-ECs. This study demonstrates that FACS purification of CD31+ hiPSC-ECs produces a diverse population of ECs. Refining the differentiation methods can enrich for subtype-specific hiPSC-ECs with functional benefits of enhancing neovascularization.
    American Journal of Translational Research 02/2013; 5(1):21-35. · 3.40 Impact Factor
Show more