Article

Association analyses of vitamin D-binding protein gene with compression strength index variation in Caucasian nuclear families.

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
Osteoporosis International (Impact Factor: 4.17). 07/2009; 21(1):99-107. DOI: 10.1007/s00198-009-0929-7
Source: PubMed

ABSTRACT This study was conducted to test whether there exists an association between vitamin D-binding protein (DBP) gene and compression strength index (CSI) phenotype. Candidate gene association analyses were conducted in total sample, male subgroup, and female subgroup, respectively. Two single-nucleotide polymorphisms (SNPs) with significant association results were found in males, suggesting the importance of DBP gene polymorphisms on the variation in CSI especially in Caucasian males.
CSI of the femoral neck (FN) is a newly developed phenotype integrating information about bone size, body size, and bone mineral density. It is considered to have the potential to improve the performance of risk assessment for hip fractures because it is based on a combination of phenotypic traits influencing hip fractures rather than a single trait. CSI is under moderate genetic determination (with a heritability of approximately 44% found in this study), but the relevant genetic study is still rather scarce.
Based on the known physiological role of DBP in bone biology and the relatively high heritability of CSI, we tested 12 SNPs of the DBP gene for association with CSI variation in 405 Caucasian nuclear families comprising 1,873 subjects from the Midwestern US. Association analyses were performed in the total sample, male and female subgroups, respectively.
Significant associations with CSI were found with two SNPs (rs222029, P = 0.0019; rs222020, P = 0.0042) for the male subgroup. Haplotype-based association tests corroborated the single-SNP results.
Our findings suggest that the DBP gene might be one of the genetic factors influencing CSI phenotype in Caucasians, especially in males.

0 Followers
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin D binding protein (DBP) is the major carrier protein of 25-hydroxyvitamin D (25(OH) D) in the circulation, where it may serve roles in maintaining stable levels during times of decreased 25(OH) availability and in regulating delivery of 25(OH) D to target tissues. Several genetic polymorphisms of DBP have been described that lead to phenotypic changes in the protein that may affect affinity, activity, and concentration. These polymorphisms have been linked with alterations in bone density in several populations. One of the mechanisms by which DBP may alter bone health involves regulating vitamin D bioavailability. DBP-bound vitamin is thought to be relatively unavailable to target tissues, and thus alterations in DBP levels or affinity could lead to changes in vitamin D bioactivity. As a result, functional vitamin D status may differ greatly between individuals with similar total 25(OH) D levels. Additionally, DBP may have independent roles on macrophage and osteoclast activation. This review will summarize recent findings about DBP with respect to measures of bone density and health.
    International Journal of Endocrinology 06/2014; 2014:561214. DOI:10.1155/2014/561214 · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serum 25-hydroxyvitamin D [25(OH)D] is often deficient (<12 ng/ml) or insufficient (<20 ng/ml) in youth living with human immunodeficiency virus type 1 infection (YLH). Based on evidence from multiple genome-wide association studies, we hypothesized that genetic factors associated with 25(OH)D deficiency should be readily detectable in YLH even when controlling for other known factors, including use of the antiretroviral drug efavirenz (EFV). Genotyping by bi-directional sequencing targeted 15 single nucleotide polymorphisms (SNPs) at the GC/DBP locus, with a focus on coding and regulatory variants, as well as those repeatedly reported in the literature. Three intronic SNPs (rs222016, rs222020, and rs222029) in a conserved haplotype block had unequivocal association signals (false discovery rate ≤ 0.006). In particular, the minor allele G for rs222020 was highly unfavorable among 192 YLH (99 African-Americans and 93 others), as gauged by relatively low likelihood for 25(OH)D sufficiency at enrollment (odds ratio = 0.31, p = 9.0 × 10(-4)). In a reduced multivariable model, race, season, latitude, body mass index, exposure to EFV, and rs222020-G were independent factors that collectively accounted for 38% of variance in the log10-transformed 25(OH)D concentration (p < 0.0001). Interaction terms were evident for rs222020-G × season (p < 0.001), latitude × season (especially fall and winter; p < 0.01), and race × EFV use (p = 0.024). Overall, variance in serum 25(OH)D is substantially attributable to multiple factors, but the exact contribution of genetic and non-genetic factors can be obscured by partial overlaps and frequent interactions.
    Frontiers in Genetics 01/2013; 4:234. DOI:10.3389/fgene.2013.00234
  • [Show abstract] [Hide abstract]
    ABSTRACT: Data gathered from a nationally representative cohort demonstrated that subject with low skeletal muscle mass had consistently low femoral neck composite strength indices for compression, bending, and impact, especially in older women, supporting the highly integrated nature of skeletal muscle and bone.
    Osteoporosis International 11/2014; 26(2). DOI:10.1007/s00198-014-2959-z · 4.17 Impact Factor

Preview

Download
0 Downloads
Available from