Article

Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes.

Hagedorn Research Institute and Steno Diabetes Center, Gentofte, Denmark.
Diabetes care (Impact Factor: 8.57). 07/2009; 32(9):1663-8. DOI: 10.2337/dc09-0533
Source: PubMed

ABSTRACT Interleukin (IL)-1 impairs insulin secretion and induces beta-cell apoptosis. Pancreatic beta-cell IL-1 expression is increased and interleukin-1 receptor antagonist (IL-1Ra) expression reduced in patients with type 2 diabetes. Treatment with recombinant IL-1Ra improves glycemia and beta-cell function and reduces inflammatory markers in patients with type 2 diabetes. Here we investigated the durability of these responses.
Among 70 ambulatory patients who had type 2 diabetes, A1C >7.5%, and BMI >27 kg/m(2) and were randomly assigned to receive 13 weeks of anakinra, a recombinant human IL-1Ra, or placebo, 67 completed treatment and were included in this double-blind 39-week follow-up study. Primary outcome was change in beta-cell function after anakinra withdrawal. Analysis was done by intention to treat.
Thirty-nine weeks after anakinra withdrawal, the proinsulin-to-insulin (PI/I) ratio but not stimulated C-peptide remained improved (by -0.07 [95% CI -0.14 to -0.02], P = 0.011) compared with values in placebo-treated patients. Interestingly, a subgroup characterized by genetically determined low baseline IL-1Ra serum levels maintained the improved stimulated C-peptide obtained by 13 weeks of IL-1Ra treatment. Reductions in C-reactive protein (-3.2 mg/l [-6.2 to -1.1], P = 0.014) and in IL-6 (-1.4 ng/l [-2.6 to -0.3], P = 0.036) were maintained until the end of study.
IL-1 blockade with anakinra induces improvement of the PI/I ratio and markers of systemic inflammation lasting 39 weeks after treatment withdrawal.

0 Followers
 · 
181 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A complex web of dynamic relationships between innate and adaptive immunity is now evident for many autoinflammatory and autoimmune disorders, the first deriving from abnormal activation of innate immune system without any conventional danger triggers and the latter from self-/non-self-discrimination loss of tolerance, and systemic inflammation. Due to clinical and pathophysiologic similarities giving a crucial role to the multifunctional cytokine interleukin-1, the concept of autoinflammation has been expanded to include nonhereditary collagen-like diseases, idiopathic inflammatory diseases, and metabolic diseases. As more patients are reported to have clinical features of autoinflammation and autoimmunity, the boundary between these two pathologic ends is becoming blurred. An overview of monogenic autoinflammatory disorders, PFAPA syndrome, rheumatoid arthritis, type 2 diabetes mellitus, uveitis, pericarditis, Behçet’s disease, gout, Sjögren’s syndrome, interstitial lung diseases, and Still’s disease is presented to highlight the fundamental points that interleukin-1 displays in the cryptic interplay between innate and adaptive immune systems.
    Mediators of Inflammation 02/2015; 2015:1-21. DOI:10.1155/2015/194864 · 2.42 Impact Factor
  • Source
    Critical Reviews in Eukaryotic Gene Expression 01/2015; DOI:10.1615/CritRevEukaryotGeneExpr.2015013358 · 2.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes and obesity are worldwide health problems. White fat dynamically participates in hormonal and inflammatory regulation. White adipose tissue is recognized as a multifactorial organ that secretes several adipose-derived factors that have been collectively termed " adipokines. " Adipokines are pleiotropic molecules that gather factors such as leptin, adiponectin, visfatin, apelin, vaspin, hepcidin, RBP4, and inflammatory cytokines, including TNF and IL-1í µí»½, among others. Multiple roles in metabolic and inflammatory responses have been assigned to these molecules. Several adipokines contribute to the self-styled " low-grade inflammatory state " of obese and insulin-resistant subjects, inducing the accumulation of metabolic anomalies within these individuals, including autoimmune and inflammatory diseases. Thus, adipokines are an interesting drug target to treat autoimmune diseases, obesity, insulin resistance, and adipose tissue inflammation. The aim of this review is to present an overview of the roles of adipokines in different immune and nonimmune cells, which will contribute to diabetes as well as to adipose tissue inflammation and insulin resistance development. We describe how adipokines regulate inflammation in these diseases and their therapeutic implications. We also survey current attempts to exploit adipokines for clinical applications, which hold potential as novel approaches to drug development in several immune-mediated diseases.
    Journal of Diabetes Research 04/2015; 2014:11. DOI:10.1155/2015/681612 · 3.54 Impact Factor

Full-text (2 Sources)

Download
49 Downloads
Available from
May 30, 2014

Similar Publications