Article

Receptors for Advanced Glycation End-Products Targeting Protect against Hyperoxia-Induced Lung Injury in Mice

Department of Internal Medicine, Pulmonary Division, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
American Journal of Respiratory Cell and Molecular Biology (Impact Factor: 4.11). 06/2009; 42(5):545-51. DOI: 10.1165/rcmb.2008-0265OC
Source: PubMed

ABSTRACT Patients with acute lung injury almost always require supplemental oxygen during treatment; however, elevated oxygen itself is toxic. Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors predominantly localized to alveolar type I cells that influence development and cigarette smoke-induced inflammation, but studies that address the role of RAGE in acute lung injury are insufficient. In the present investigation, we test the hypothesis that RAGE signaling functions in hyperoxia-induced inflammation. RAGE-null mice exposed to hyperoxia survived 3 days longer than age-matched wild-type mice. After 4 days in hyperoxia, RAGE-null mice had less total cell infiltration into the airway, decreased total protein leak, diminished alveolar damage in hematoxylin and eosin-stained lung sections, and a lower lung wet-to-dry weight ratio. An inflammatory cytokine antibody array revealed decreased secretion of several proinflammatory molecules in lavage fluid obtained from RAGE knockout mice when compared with wild-type control animals. Real-time RT-PCR and immunoblotting revealed that hyperoxia induced RAGE expression in primary alveolar epithelial cells, and immunohistochemistry identified increased RAGE expression in the lungs of mice after exposure to hyperoxia. These data reveal that RAGE targeting leads to a diminished hyperoxia-induced pulmonary inflammatory response. Further research into the role of RAGE signaling in the lung should identify novel targets likely to be important in the therapeutic alleviation of lung injury and associated persistent inflammation.

Full-text

Available from: Paul R Reynolds, Apr 18, 2015
0 Followers
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Receptors for advanced glycation end-products (RAGE) are immunoglobulin-like pattern recognition receptors abundantly localized to lung epithelium. Our research demonstrated that primary tobacco smoke exposure increases RAGE expression and that RAGE partly mediates pro-inflammatory signaling during exposure. However, the degree to which RAGE influences developing lungs when gestating mice are exposed to secondhand smoke (SHS) has not been determined to date. Methods Timed pregnant RAGE null and wild type control mice were exposed to 4 consecutive days of SHS from embryonic day (E) 14.5 through E18.5 using a state of the art nose-only smoke exposure system (Scireq, Montreal, Canada). RAGE expression was assessed using immunofluorescence, immunoblotting, and quantitative RT-PCR. TUNEL immunostaining and blotting for caspase-3 were performed to evaluate effects on cell turnover. Matrix abnormalities were discerned by quantifying collagen IV and MMP-9, a matrix metalloprotease capable of degrading basement membranes. Lastly, TNF-α and IL-1β levels were assessed in order to determine inflammatory status in the developing lung. Results Pulmonary RAGE expression was elevated in both dams exposed to SHS and in fetuses gestating within mothers exposed to SHS. Fetal weight, a measure of organismal health, was decreased in SHS-exposed pups, but unchanged in SHS-exposed RAGE null mice. TUNEL assessments suggested a shift toward pulmonary cell apoptosis and matrix in SHS-exposed pups was diminished as revealed by decreased collagen IV and increased MMP-9 expression. Furthermore, SHS-exposed RAGE null mice expressed less TNF-α and IL-1β when compared to SHS-exposed controls. Conclusions RAGE augmentation in developing pups exposed to maternal SHS weakens matrix deposition and influences lung inflammation.
    Respiratory Research 10/2014; 15(1). DOI:10.1186/s12931-014-0129-7 · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Receptors for advanced glycation end-products (RAGE) are multiligand cell-surface receptors expressed abundantly by distal pulmonary epithelium. Our lab has discovered RAGE-mediated effects in the orchestration of lung inflammation induced by tobacco smoke and environmental pollutants; however, the specific contribution of RAGE to the progression of proximal airway inflammation is still inadequately characterized. Methods and results: We generated a Tet-inducible transgenic mouse that conditionally overexpressed RAGE using the club cell (Clara) secretory protein (CCSP) promoter expressed by club (Clara) cells localized to the proximal airway. RAGE was induced for 40 days from weaning (20 days of age) until sacrifice date at 60 days. Immunohistochemistry, immunoblotting, and qPCR revealed significant RAGE up-regulation when compared to non-transgenic controls; however, H&E staining revealed no detectible morphological abnormalities and apoptosis was not enhanced during the 40 days of augmentation. Freshly procured bronchoalveolar lavage fluid (BALF) from CCSP-RAGE TG mice had significantly more total leukocytes and PMNs compared to age-matched control littermates. Furthermore, CCSP-RAGE TG mice expressed significantly more tumor necrosis factor alpha (TNF-α), interleukin 7 (IL-7), and interleukin 14 (IL-14) in whole lung homogenates compared to controls. Conclusions: These data support the concept that RAGE up-regulation specifically in lung airways may function in the progression of proximal airway inflammation.
    Respiratory Research 10/2014; 15(1). DOI:10.1186/s12931-014-0133-y · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cigarette smoking is a common and lethal worldwide habit, with considerable mortality stemming from its deleterious effects on heart function. While current theories posit altered blood lipids and fibrinogen metabolism as likely mediators, none have explored the role of the sphingolipid ceramide in exacerbating heart function with smoke exposure. Ceramide production is a consequence of cigarette smoke in the lung, and considering ceramide's harmful effects on mitochondrial function, we sought to elucidate the role of ceramide in mediating smoke-induced altered heart mitochondrial respiration. Lung cells (A549) were exposed to cigarette smoke extract (CSE) and heart cells (H9C2) were exposed to the lung-cell conditioned medium. Adult male mice were exposed sidestream cigarette smoke for 8 wk with dietary intervention and ceramide inhibition. Ceramides and heart cell or myocardial mitochondrial respiration were determined. Lung cell cultures revealed a robust response to cigarette smoke extract in both production and secretion of ceramides. Heart cells incubated with lung-cell conditioned medium revealed a pronounced inhibition of myocardial mitochondrial respiration, though this effect was mitigated with ceramide inhibition via myriocin. In vivo, heart ceramides increased roughly 600 % in adult mice with long-term sidestream cigarette smoke exposure. This resulted in a significant ceramide-dependent reduction in left myocardial mitochondrial respiration, as heart mitochondria from the mice exposed to both smoke and myriocin injections respired normally. These results suggest ceramide to be an important mediator of altered myocardial mitochondrial function with cigarette smoke exposure. Thus, anti-ceramide therapies might be considered in the future to protect heart mitochondrial function with smoke exposure.
    BMC Cardiovascular Disorders 11/2014; 14(1):165. DOI:10.1186/1471-2261-14-165 · 1.50 Impact Factor