Article

Oviposition preference for and positional avoidance of acetic acid provide a model for competing behavioral drives in Drosophila

Program in Biological Sciences, University of California, San Francisco, CA 94143-2822, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2009; 106(27):11352-7. DOI: 10.1073/pnas.0901419106
Source: PubMed

ABSTRACT Selection of appropriate oviposition sites is essential for progeny survival and fitness in generalist insect species, such as Drosophila melanogaster, yet little is known about the mechanisms regulating how environmental conditions and innate adult preferences are evaluated and balanced to yield the final substrate choice for egg-deposition. Female D. melanogaster are attracted to food containing acetic acid (AA) as an oviposition substrate. However, our observations reveal that this egg-laying preference is a complex process, as it directly opposes an otherwise strong, default behavior of positional avoidance for the same food. We show that 2 distinct sensory modalities detect AA. Attraction to AA-containing food for the purpose of egg-laying relies on the gustatory system, while positional repulsion depends primarily on the olfactory system. Similarly, distinct central brain regions are involved in AA attraction and repulsion. Given this unique situation, in which a single environmental stimulus yields 2 opposing behavioral outputs, we propose that the interaction of egg-laying attraction and positional aversion for AA provides a powerful model for studying how organisms balance competing behavioral drives and integrate signals involved in choice-like processes.

0 Bookmarks
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oviposition site-selection in insects is mediated through innate recognition templates (IRTs) tuned to specific chemical cues. These cues aid gravid insects in choosing suitable oviposition sites and may even enhance the fitness of their offspring by warding off predators and parasitoids. However, studies on the evolution of oviposition site-selection and cues instigating oviposition in domesticated insects remain elusive. Using the interaction between the silkmoth, Bombyx mori, and its host plant mulberry, Morus alba, as a model system, we demonstrate that centuries of domestication of silkmoth has not impaired its oviposition site-selection function. Silkmoths significantly preferred mulberry leaves to filter paper as oviposition sites. Oviposition assays with filter paper, filter paper treated with leaf volatiles and leaf alone proved that surface texture was not a significant criterion for oviposition site-selection, but volatile cues were. Oviposition assays with electrophysiologically active compounds from mulberry revealed that two of the volatiles, valencene and α-humulene, aided moths in choosing suitable oviposition sites and enhanced egg-laying significantly. Moreover, we show that generalist egg-parasitoids are strongly repelled by valencene and α-humulene. Our results demonstrate that IRTs tuned to cues that aid crucial functions like oviposition site-selection are less likely to be impaired even after centuries of domestication.
    Scientific Reports 12/2014; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Selecting a suitable site to deposit their eggs is an important reproductive need of Drosophila females. Although their choosiness toward egg-laying sites is well documented, the specific neural mechanism that activates females' search for attractive egg-laying sites is not known. Here, we show that distention and contraction of females' internal reproductive tract triggered by egg delivery through the tract plays a critical role in activating such search. We found that females start to exhibit acetic acid (AA) attraction prior to depositing each egg but no attraction when they are not laying eggs. Artificially distending the reproductive tract triggers AA attraction in non-egg-laying females, whereas silencing the mechanosensitive neurons we identified that can sense the contractile status of the tract eliminates such attraction. Our work uncovers the circuit basis of an important reproductive need of Drosophila females and provides a simple model for dissecting the neural mechanism that underlies a reproductive need-induced behavioral modification.
    Cell Reports 10/2014; 9(2):522-30. DOI:10.1016/j.celrep.2014.09.033 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Oviposition site-selection in insects is mediated through innate recognition templates (IRTs) tuned to specific chemical cues. These cues aid gravid insects in choosing suitable oviposition sites and may even enhance the fitness of their offspring by warding off predators and parasitoids. However, studies on the evolution of oviposition site-selection and cues instigating oviposition in domesticated insects remain elusive. Using the interaction between the silkmoth, Bombyx mori, and its host plant mulberry, Morus alba, as a model system, we demonstrate that centuries of domestication of silkmoth has not impaired its oviposition site-selection function. Silkmoths significantly preferred mulberry leaves to filter paper as oviposition sites. Oviposition assays with filter paper, filter paper treated with leaf volatiles and leaf alone proved that surface texture was not a significant criterion for oviposition site-selection, but volatile cues were. Oviposition assays with electrophysiologically active compounds from mulberry revealed that two of the volatiles, valencene and α-humulene, aided moths in choosing suitable oviposition sites and enhanced egg-laying significantly. Moreover, we show that generalist egg-parasitoids are strongly repelled by valencene and α-humulene. Our results demonstrate that IRTs tuned to cues that aid crucial functions like oviposition site-selection are less likely to be impaired even after centuries of domestication.
    Scientific Reports 11/2014; 12/2014. DOI:10.1038/srep07472 · 5.08 Impact Factor

Preview

Download
3 Downloads
Available from