Article

Structural and functional characterization of brazilitoxins II and III (BbTX-II and -III), two myotoxins from the venom of Bothrops brazili snake.

Department of Biochemistry, Institute of Biology, State University of Campinas, Campinas, SP, Brazil.
Toxicon (Impact Factor: 2.92). 07/2009; 54(6):818-27. DOI: 10.1016/j.toxicon.2009.06.008
Source: PubMed

ABSTRACT We report the purification and biochemical/pharmacological characterization of two myotoxic PLA(2) (BbTX-II K49 PLA(2) homologue and BbTX-III PLA(2)) from Bothrops brazili venom. Both were purified by a single chromatographic step on reverse phase HPLC, showing M(r) approximately 14 kDa for both myotoxins, showing high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The BbTX-II K49 PLA(2) homologue and BbTX-III PLA(2), had a sequence of 121 amino acid residues. BbTX-II: [amino acid sequence: see text] with pI value 8.73. BbTX-III: [amino acid sequence: see text] with a pI value of 8.46. BbTX-III presented PLA(2) activity in the presence of a synthetic substrate and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0 and 35-45 degrees C. Maximum PLA(2) activity required Ca(2+). In vitro, BbTX-II K49 PLA(2) homologue and BbTX-III PLA(2) caused a blockade of the neuromuscular transmission in young chick biventer cervicis preparations in a similar way to other Bothrops species. In mice, BbTX-II K49 PLA(2) homologue and BbTX-III PLA(2) induces myonecrosis and edema-forming activity. All these biological effects induced by the BbTX-II K49 PLA(2) homologue, occur in the absence of a measurable PLA(2) activity in vitro, further supporting the concept of catalytic independent mechanisms exerted by Lys49 proteins.

0 Bookmarks
 · 
107 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bothrops brazili is a snake found in the forests of the Amazonian region whose commercial therapeutic anti-bothropic serum has low efficacy for local myotoxic effects, resulting in an important public health problem in this area. Catalytically inactive phospholipases A2-like (Lys49-PLA2s) are among the main components from Bothrops genus venoms and are capable to cause drastic myonecrosis. Several studies have shown that the C-terminal region of these toxins, which includes a variable combination of positively charged and hydrophobic residues, is responsible for their activity. In this work we describe the crystal structures of two Lys49-PLA2s (BbTX-II and MTX-II) from Bothrops brazili venom and a comprehensive structural comparison with several Lys49-PLA2s. Based on these results, it was identified two independent sites of interaction between protein and membrane which leads to the proposition of a new myotoxic mechanism for bothropic Lys49-PLA2s composed by five different steps. This proposition is able to fully explain the action of these toxins and may be useful to develop efficient inhibitors for complement the conventional antivenom administration.
    Biochimica et Biophysica Acta 10/2013; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bleu TX-III was isolated from Bothrops leucurus snake venom on one-step analytical chromatography reverse phase HPLC, was homogeneous on SDS-PAGE, and was confirmed by Q-Tof Ultima API ESI/MS (TOF MS mode) mass spectrometry in 14243.8 Da. Multiple alignments of Bleu TX-III show high degree of homology with basic PLA2 myotoxins from other Bothrops venoms. Our studies on local and systemic myotoxicity "in vivo" reveal that Bleu TX-III is myotoxin with local but not systemic action due to the decrease in the plasmatic CK levels when Bleu TX-III is administrated by intravenous route in mice (dose 1 and 5 μ g). And at a dose of 20 μ g myotoxin behaves like a local and systemic action. Bleu TX-III induced moderate marked paw edema, evidencing the local increase in vascular permeability. The inflammatory events induced in the mice (I.M.) were investigated. The increase in the levels of IL-1, IL-6, and TNF- α was observed in the plasma. It is concluded that Bleu TX-III induces inflammatory events in this model. The enzymatic phospholipid hydrolysis may be relevant to these phenomena. Bothrops leucurus venom is still not extensively explored, and the knowledge of its toxins separately through the study of structure/function will contribute for a better understanding of its action mechanism.
    BioMed research international. 01/2013; 2013:941467.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BrTX-I, a PLA2, was purified from Bothrops roedingeri venom after only one chromatographic step using reverse-phase HPLC on μ -Bondapak C-18 column. A molecular mass of 14358.69 Da was determined by MALDI-TOF mass spectrometry. Amino acid analysis showed a high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The total amino acid sequence was obtained using SwissProt database and showed high amino acid sequence identity with other PLA2 from snake venom. The amino acid composition showed that BrTX-I has a high content of Lys, Tyr, Gly, Pro, and 14 half-Cys residues, typical of a basic PLA2. BrTX-I presented PLA2 activity and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0, 35-45°C, and required Ca(2+). In vitro, the whole venom and BrTX-I caused a neuromuscular blockade in biventer cervicis preparations in a similar way to other Bothrops species. BrTX-I induced myonecrosis and oedema-forming activity analyzed through injection of the purified BrTX-I in mice. Since BrTX-I exerts a strong proinflammatory effect, the enzymatic phospholipid hydrolysis might be relevant for these phenomena; incrementing levels of IL-1, IL-6, and TNF α were observed at 15 min, 30 min, one, two, and six hours postinjection, respectively.
    BioMed research international. 01/2013; 2013:591470.