Article

Identification of proteins associated with the yeast mitochondrial RNA polymerase by tandem affinity purification.

Departments of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford, USA.
Yeast (Impact Factor: 1.96). 06/2009; 26(8):423-40. DOI: 10.1002/yea.1672
Source: PubMed

ABSTRACT The abundance of mitochondrial (mt) transcripts varies under different conditions, and is thought to depend upon rates of transcription initiation, transcription termination/attenuation and RNA processing/degradation. The requirement to maintain the balance between RNA synthesis and processing may involve coordination between these processes; however, little is known about factors that regulate the activity of mtRNA polymerase (mtRNAP). Recent attempts to identify mtRNAP-protein interactions in yeast by means of a generalized tandem affinity purification (TAP) protocol were not successful, most likely because they involved a C-terminal mtRNAP-TAP fusion (which is incompatible with mtRNAP function) and because of the use of whole-cell solubilization protocols that did not preserve the integrity of mt protein complexes. Based upon the structure of T7 RNAP (to which mtRNAPs show high sequence similarity), we identified positions in yeast mtRNAP that allow insertion of a small affinity tag, confirmed the mature N-terminus, constructed a functional N-terminal TAP-mtRNAP fusion, pulled down associated proteins, and identified them by LC-MS-MS. Among the proteins found in the pull-down were a DEAD-box protein (Mss116p) and an RNA-binding protein (Pet127p). Previous genetic experiments suggested a role for these proteins in linking transcription and RNA degradation, in that a defect in the mt degradadosome could be suppressed by overexpression of either of these proteins or, independently, by mutations in either mtRNAP or its initiation factor Mtf1p. Further, we found that Mss116p inhibits transcription by mtRNAP in vitro in a steady-state reaction. Our results support the hypothesis that Mss116p and Pet127p are involved in modulation of mtRNAP activity.

0 Bookmarks
 · 
92 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
    Genetics 12/2012; 192(4):1203-34. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human mitochondrial RNA polymerase, POLRMT, is required for mitochondrial DNA (mtDNA) transcription and forms initiation complexes with human mitochondrial transcription factor B2 (h-mtTFB2). However, POLRMT also interacts with the paralogue of h-mtTFB2, h-mtTFB1, which is a 12S ribosomal RNA methyltransferase required for small (28S) mitochondrial ribosome subunit assembly. Herein, we show that POLRMT associates with h-mtTFB1 in 28S mitochondrial ribosome complexes that are stable in the absence of mitochondrial transcription and distinct from transcription complexes containing POLRMT and h-mtTFB2. Overexpression of POLRMT in HeLa cells increases 12S rRNA methylation by h-mtTFB1 and reduces the steady-state levels of mtDNA-encoded proteins and respiration, apparently because of a decrease in fully assembled 55S mitochondrial ribosomes. We propose that POLRMT interacts directly with h-mtTFB1 in 28S mitochondrial ribosomes to augment its 12S rRNA methyltransferase activity, and that together they provide a checkpoint for proper 28S and 55S mitochondrial ribosome assembly. Thus, POLRMT is multi-functional, forming distinct protein complexes that regulate different steps in mitochondrial gene expression, at least one of which does not involve transcription per se. The significance of these results is discussed with regard to the mechanism and regulation of human mitochondrial gene expression and the potential multi-functionality of RNA polymerases in general.
    Nucleic Acids Research 01/2013; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are essential organelles that harbor a reduced genome, and expression of that genome requires regulated metabolism of its transcriptome by nuclear-encoded proteins. Despite extensive investigation, a comprehensive map of the yeast mitochondrial transcriptome has not been developed and all of the RNA-metabolizing proteins have not been identified, both of which are prerequisites to elucidating the basic RNA biology of mitochondria. Here, we present a mitochondrial transcriptome map of the yeast S288C reference strain. Using RNAseq and bioinformatics, we show the expression level of all transcripts, revise all promoter, origin of replication, and tRNA annotations, and demonstrate for the first time the existence of alternative splicing, mirror RNAs, and a novel RNA processing site in yeast mitochondria. The transcriptome map has revealed new aspects of mitochondrial RNA biology and we expect it will serve as a valuable resource. As a complement to the map, we present our compilation of all known yeast nuclear-encoded ribonucleases (RNases), and a screen of this dataset for those that are imported into mitochondria. We sought to identify RNases that are refractory to recovery in traditional mitochondrial screens due to an essential function or eclipsed accumulation in another cellular compartment. Using this in silico approach, the essential RNase of the nuclear and cytoplasmic exosome, Dis3p, emerges as a strong candidate. Bioinformatics and in vivo analyses show that Dis3p has a conserved and functional mitochondrial-targeting signal (MTS). A clean and marker-less chromosomal deletion of the Dis3p MTS results in a defect in the decay of intron and mirror RNAs, thus revealing a role for Dis3p in mitochondrial RNA decay.
    PLoS ONE 01/2013; 8(10):e78105. · 3.53 Impact Factor

Full-text

View
0 Downloads
Available from