Article

Identification of proteins associated with the yeast mitochondrial RNA polymerase by tandem affinity purification

Departments of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford, USA.
Yeast (Impact Factor: 1.74). 08/2009; 26(8):423-40. DOI: 10.1002/yea.1672
Source: PubMed

ABSTRACT The abundance of mitochondrial (mt) transcripts varies under different conditions, and is thought to depend upon rates of transcription initiation, transcription termination/attenuation and RNA processing/degradation. The requirement to maintain the balance between RNA synthesis and processing may involve coordination between these processes; however, little is known about factors that regulate the activity of mtRNA polymerase (mtRNAP). Recent attempts to identify mtRNAP-protein interactions in yeast by means of a generalized tandem affinity purification (TAP) protocol were not successful, most likely because they involved a C-terminal mtRNAP-TAP fusion (which is incompatible with mtRNAP function) and because of the use of whole-cell solubilization protocols that did not preserve the integrity of mt protein complexes. Based upon the structure of T7 RNAP (to which mtRNAPs show high sequence similarity), we identified positions in yeast mtRNAP that allow insertion of a small affinity tag, confirmed the mature N-terminus, constructed a functional N-terminal TAP-mtRNAP fusion, pulled down associated proteins, and identified them by LC-MS-MS. Among the proteins found in the pull-down were a DEAD-box protein (Mss116p) and an RNA-binding protein (Pet127p). Previous genetic experiments suggested a role for these proteins in linking transcription and RNA degradation, in that a defect in the mt degradadosome could be suppressed by overexpression of either of these proteins or, independently, by mutations in either mtRNAP or its initiation factor Mtf1p. Further, we found that Mss116p inhibits transcription by mtRNAP in vitro in a steady-state reaction. Our results support the hypothesis that Mss116p and Pet127p are involved in modulation of mtRNAP activity.

0 Followers
 · 
122 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transcription of the yeast mitochondrial genome is carried out by an RNA polymerase (Rpo41p) that is related to single subunit bacteriophage RNA polymerases but requires an additional factor (Mtf1p) for initiation. In this work we show that Mtf1p is involved in multiple roles during initiation including discrimination of upstream base pairs in the promoter, initial melting of three to four base pairs around the site of transcript initiation, and suppression of nonspecific initiation. It, thus, appears that Mtf1p is functionally analogous to initiation factors of multisubunit RNA polymerases, such as sigma. Photocross-linking experiments reveal close proximity between Mtf1p and the promoter DNA and show that the C-terminal domain makes contacts with the template strand in the vicinity of the start site. Interestingly, Mtf1p is related to a class of RNA methyltransferases, suggesting an early evolutionary link between RNA synthesis and processing.
    Journal of Biological Chemistry 11/2009; 285(6):3957-64. DOI:10.1074/jbc.M109.051003 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human mitochondrial transcription is driven by a single subunit RNA polymerase and a set of basal transcription factors. The development of a recombinant in vitro transcription system has allowed for a detailed molecular characterization of the individual components and their contribution to transcription initiation. We found that TFAM and TFB2M act synergistically and increase transcription efficiency 100-200-fold as compared with RNA polymerase alone. Both the light-strand promoter (LSP) and the HSP1 promoters displayed maximal levels of in vitro transcription when TFAM was present in an amount equimolar to the DNA template. Importantly, we did not detect any significant transcription activity in the presence of the TFB2M paralog, TFB1M, or when templates containing the putative HSP2 promoter were used. These data confirm previous observations that TFB1M does not function as a bona fide transcription factor and raise questions as to whether HSP2 serves as a functional promoter in vivo. In addition, we did not detect transcription stimulation by the ribosomal protein MRPL12. Thus, only two essential initiation factors, TFAM and TFB2M, and two promoters, LSP and HSP1, are required to drive transcription of the mitochondrial genome.
    Journal of Biological Chemistry 06/2010; 285(24):18129-33. DOI:10.1074/jbc.C110.128918 · 4.60 Impact Factor
Show more

Preview

Download
5 Downloads
Available from