Article

Transfer RNA and human disease

Department of Biochemistry, College of Medicine, University of Vermont Burlington, VT, USA
Frontiers in Genetics 06/2014; 5:158. DOI: 10.3389/fgene.2014.00158
Source: PubMed

ABSTRACT Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are "hotspots" for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.

Download full-text

Full-text

Available from: Jamie A Abbott, Nov 21, 2014
2 Followers
 · 
92 Views
  • Source
    Frontiers in Genetics 09/2014; 5:336. DOI:10.3389/fgene.2014.00336
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We are interested in identifying and characterizing loci of the human genome that harbor sequences resembling known mitochondrial and nuclear tRNAs. To this end, we used the known nuclear and mitochondrial tRNA genes (the "tRNA-Reference" set) to search for "tRNA-lookalikes" and found many such loci at different levels of sequence conservation. We find that the large majority of these tRNA-lookalikes resemble mitochondrial tRNAs and exhibit a skewed over-representation in favor of some mitochondrial anticodons. Our analysis shows that the tRNA-lookalikes have infiltrated specific chromosomes and are preferentially located in close proximity to known nuclear tRNAs (z-score ≤ -2.54, P-value ≤ 0.00394). Examination of the transcriptional potential of these tRNA-lookalike loci using public transcript annotations revealed that more than 20% of the lookalikes are transcribed as part of either known protein-coding pre-mRNAs, known lncRNAs, or known non-protein-coding RNAs, while public RNA-seq data perfectly agreed with the endpoints of tRNA-lookalikes. Interestingly, we found that tRNA-lookalikes are significantly depleted in known genetic variations associated with human health and disease whereas the known tRNAs are enriched in such variations. Lastly, a manual comparative analysis of the cloverleaf structure of several of the transcribed tRNA-lookalikes revealed no disruptive mutations suggesting the possibility that these loci give rise to functioning tRNA molecules.
    Frontiers in Genetics 10/2014; 5:344. DOI:10.3389/fgene.2014.00344
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Energy metabolism and mitochondrial function hold a core position in cellular homeostasis. Oxidative metabolism is regulated at multiple levels, ranging from gene transcription to allosteric modulation. To accomplish the fine tuning of these multiple regulatory circuits, the nuclear and mitochondrial compartments are tightly and reciprocally controlled. The fact that nuclear encoded factors, PPARγ coactivator 1α and mitochondrial transcription factor A, play pivotal roles in the regulation of oxidative metabolism and mitochondrial biogenesis is paradigmatic of this crosstalk. Here we provide an updated survey of the genetic and epigenetic mechanisms involved in the control of energy metabolism and mitochondrial function. Chromatin dynamics highly depends on post-translational modifications occurring at specific amino acids in histone proteins and other factors associated to nuclear DNA. In addition to the well characterized enzymes responsible for histone methylation/demethylation and acetylation/deacetylation, other factors have gone on the "metabolic stage". This is the case of the new class of α-ketoglutarate-regulated demethylases (Jumonji C domain containing demethylases) and of the NAD+-dependent deacetylases, also known as sirtuins. Moreover, unexpected features of the machineries involved in mitochondrial DNA (mtDNA) replication and transcription, mitochondrial RNA processing and maturation have recently emerged. Mutations or defects of any component of these machineries profoundly affect mitochondrial activity and oxidative metabolism. Finally, recent evidences support the importance of mtDNA packaging in replication and transcription. These observations, along with the discovery that non-classical CpG islands present in mtDNA undergo methylation, indicate that epigenetics also plays a role in the regulation of the mitochondrial genome function.
    Current Genomics 12/2014; 15(6):436-56. DOI:10.2174/138920291506150106151119 · 2.87 Impact Factor
Show more

Similar Publications