Article

Regulation of LRRK2 stability by the E3 ubiquitin ligase CHIP.

Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
PLoS ONE (Impact Factor: 3.53). 02/2009; 4(6):e5949. DOI: 10.1371/journal.pone.0005949
Source: PubMed

ABSTRACT Dominantly inherited mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common cause of familial Parkinson's disease (PD) and have also been identified in individuals with sporadic PD. Although the exact cellular function of LRRK2 remains unknown, most PD-linked mutations appear to be toxic to cells in culture via mechanisms that depend on the kinase activity of LRRK2 or on the formation of cytoplasmic inclusions. Here we show that the E3 ubiquitin ligase CHIP physically associates with LRRK2 and regulates the cellular abundance of LRRK2. We further show that LRRK2 forms a complex with overexpressed and endogenous CHIP and Hsp90. Our data indicates that the destabilization of LRRK2 by CHIP is due to ubiquitination and proteasome-dependent degradation. Hsp90 can attenuate CHIP-mediated degradation and this can be blocked by the Hsp90 inhibitor geldanamycin. These findings provide important insight into the cellular regulation of LRRK2 stability and may lead to the development of therapeutics to treat PD based on controlling LRRK2 stability.

Full-text

Available from: Matthew Goldberg, Jun 03, 2015
0 Followers
 · 
102 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Maintenance of cellular homeostasis is regulated by the molecular chaperones. Under pathogenic conditions, aberrant proteins are triaged by the chaperone network. These aberrant proteins, known as "clients," have major roles in the pathogenesis of numerous neurological disorders, including tau in Alzheimer's disease, α-synuclein and LRRK2 in Parkinson's disease, SOD-1, TDP-43 and FUS in amyotrophic lateral sclerosis, and polyQ-expanded proteins such as huntingtin in Huntington's disease. Recent work has demonstrated that the use of chemical compounds which inhibit the activity of molecular chaperones subsequently alter the fate of aberrant clients. Inhibition of Hsp90 and Hsc70, two major molecular chaperones, has led to a greater understanding of how chaperone triage decisions are made and how perturbing the chaperone system can promote clearance of these pathogenic clients. Described here are major pathways and components of several prominent neurological disorders. Also discussed is how treatment with chaperone inhibitors, predominately Hsp90 inhibitors which are selective for a diseased state, can relieve the burden of aberrant client signaling in these neurological disorders.
    04/2013; 2013(Suppl 10). DOI:10.4172/2161-0460.S10-007
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leucine-rich repeat kinase 2 (LRRK2) is a large, ubiquitous protein of unknown function. Mutations in the gene encoding LRRK2 have been linked to familial and sporadic Parkinson disease (PD) cases. The LRRK2 protein is a single polypeptide that displays GTPase and kinase activity. Kinase and GTPase domains are involved in different cellular signalling pathways. Despite several experimental studies associating LRRK2 protein with various intracellular membranes and vesicular structures such as endosomal/lysosomal compartments, the mitochondrial outer membrane, lipid rafts, microtubule-associated vesicles, the golgi complex, and the endoplasmic reticulum its broader physiologic function(s) remain unidentified. Additionally, the cellular distribution of LRRK2 may indicate its role in several different pathways, such as the ubiquitin-proteasome system, the autophagic-lysosomal pathway, intracellular trafficking, and mitochondrial dysfunction. This review discusses potential mechanisms through which LRRK2 may mediate neurodegeneration and cause PD.
    Experimental Neurology 06/2014; 261. DOI:10.1016/j.expneurol.2014.05.025 · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many members of the heat shock protein family act in unison to refold or degrade misfolded proteins. Some heat shock proteins also directly interfere with apoptosis. These homeostatic functions are especially important in proteinopathic neurodegenerative diseases, in which specific proteins misfold, aggregate, and kill cells through proteotoxic stress. Heat shock protein levels may be increased or decreased in these disorders, with the direction of the response depending on the individual heat shock protein, the disease, cell type, and brain region. Aging is also associated with an accrual of proteotoxic stress and modulates expression of several heat shock proteins. We speculate that the increase in some heat shock proteins in neurodegenerative conditions may be partly responsible for the slow progression of these disorders, whereas the increase in some heat shock proteins with aging may help delay senescence. The protective nature of many heat shock proteins in experimental models of neurodegeneration supports these hypotheses. Furthermore, some heat shock proteins appear to be expressed at higher levels in longer-lived species. However, increases in heat shock proteins may be insufficient to override overwhelming proteotoxic stress or reverse the course of these conditions, because the expression of several other heat shock proteins and endogenous defense systems is lowered. In this review we describe a number of stress-induced changes in heat shock proteins as a function of age and neurodegenerative pathology, with an emphasis on the heat shock protein 70 (Hsp70) family and the two most common proteinopathic disorders of the brain, Alzheimer's and Parkinson's disease.
    Journal of Cell Communication and Signaling 09/2014; 8(4). DOI:10.1007/s12079-014-0243-9