Article

Endomysial fibrosis in Duchenne muscular dystrophy: a marker of poor outcome associated with macrophage alternative activation.

AP-HP, Necker - Enfants Malades Hospital, Neuropediatry Unit, Paris, France.
Journal of Neuropathology and Experimental Neurology (Impact Factor: 4.37). 06/2009; 68(7):762-73. DOI: 10.1097/NEN.0b013e3181aa31c2
Source: PubMed

ABSTRACT There is considerable interindividual variability in motor function among patients with Duchenne muscular dystrophy (DMD); moreover, pathogenetic mechanisms of motor dysfunction in DMD are not understood. Using multiparametric analysis, we correlated initial histologic alterations in quadriceps muscle biopsies from 25 steroid therapy-free patients with DMD with 13 relevant clinical features assessed by a single clinical team during a long-term period (mean, >10 years). There was no residual muscle dystrophin by immunohistochemistry and Western blot analysis in the biopsies. Myofiber size, hypercontracted fibers, necrotic/basophilic fibers, endomysial and perimysial fibrosis, and fatty degeneration were assessed by morphometry. Endomysial fibrosis was the only myopathologic parameter that significantly correlated with poor motor outcome as assessed by quadriceps muscle strength, manual muscle testing of upper and lower limbs at 10 years, and age at ambulation loss (all p<0.002). Motor outcome and fibrosis did not correlate with genotype. Myofibers exhibited oxidative stress-induced protein alterations and became separated from capillaries by fibrosis that was associated with both increase of CD206+ alternatively activated macrophages and a relative decrease of CD56+ satellite cells (both p<0.0001). This study provides a strong rationale for antifibrotic therapeutic strategies in DMD and supports the view that alternatively activated macrophages that are known to inhibit myogenesis while promoting cellular collagen production play a key role in myofibrosis.

0 Bookmarks
 · 
129 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the translational process of developing innovative therapies for DMD (Duchenne muscular dystrophy), the last pre-clinical validation step is often carried out in the most relevant animal model of this human disease namely the GRMD (Golden retriever muscular dystrophy) dog. GRMD dogs mimic the human disease,DMD, in many aspects including the inter-individual heterogeneity. This last point can be seen as a drawback for an animal model but is inherently related to its close resemblance to DMD patients. In order to improve the management of this inter-individual heterogeneity we have screened a combination of biomarkers in 61 two month-old GRMD dogs at the onset of the disease and a posteriori we addressed their predictive value on the severity of the disease. Three non-invasive biomarkers obtained at early stages of the disease were found to be highly predictive for the loss of ambulation before 6 months of age. An elevation in the number of circulating CD4+CD49dHi T-lymphocytes, and a decreased stride frequency resulting in a reduced spontaneous speed were found to be strongly associated with the severe clinical form of the disease. These factors can be used as predictive tests to screen dogs to separate them into groups with slow or fast disease progression before their inclusion into a therapeutic pre-clinical trial and therefore improve the reliability and translational value of the trials carried out on this invaluable large animal model. These same biomarkers have also been described to be predictive for the time to loss of ambulation in DMD boys, strengthening the relevance of GRMD dogs as pre-clinical models of this devastating muscle disease.
    Disease Models and Mechanisms 09/2014; DOI:10.1242/dmm.016014 · 5.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The skeletal muscle has the capacity to repair damage by the activation and differentiation of fiber sub-laminar satellite cells. Regeneration impairment due to reduced satellite cells number and/or functional capacity leads to fiber substitution with ectopic tissues including fat and fibrous tissue and to the loss of muscle functions. Muscle mesenchymal cells that in physiological conditions sustain or directly contribute to regeneration differentiate in adipocytes in patients with persistent damage and inflammation of the skeletal muscle. These cells comprise the fibro-adipogenic precursors, the PW1-expressing cells and some interstitial cells associated with vessels (pericytes, mesoangioblasts and myoendothelial cells). Resident fibroblasts that are responsible for collagen deposition and extracellular matrix remodeling during regeneration yield fibrotic tissue and can differentiate into adipose cells. Some authors have also proposed that satellite cells themselves could transdifferentiate into adipocytes, although recent results by lineage tracing techniques seem to put this theory to discussion. This review summarizes findings about muscle resident mesenchymal cell differentiation in adipocytes and recapitulates the molecular mediators involved in intramuscular adipose tissue deposition.
    Cellular and Molecular Life Sciences CMLS 01/2015; DOI:10.1007/s00018-015-1857-7 · 5.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Various therapeutic approaches have been studied for the treatment of Duchenne muscular dystrophy (DMD), but none of these approaches have led to significant long-term effects in patients. One reason for this observed inefficacy may be the use of inappropriate animal models for the testing of therapeutic agents. The mdx mouse is the most widely used murine model of DMD, yet it does not model the fibrotic progression observed in patients. Other murine models of DMD are available that lack one or both alleles of utrophin, a functional analog of dystrophin. The aim of this study was to compare fibrosis and myofiber damage in the mdx, mdx/utrn+/- and double knockout (dko) mouse models. We used Masson's trichrome stain and percentage of centrally-nucleated myofibers as indicators of fibrosis and myofiber regeneration, respectively, to assess disease progression in diaphragm and gastrocnemius muscles harvested from young and aged wild-type, mdx, mdx/utrn+/- and dko mice. Our results indicated that eight week-old gastrocnemius muscles of both mdx/utrn+/- and dko hind limb developed fibrosis whereas age-matched mdx gastrocnemius muscle did not (p = 0.002). The amount of collagen found in the mdx/utrn+/- diaphragm was significantly higher than that found in the corresponding diaphragm muscles of wild-type animals, but not of mdx animals (p = 0.0003). Aged mdx/utrn+/- mice developed fibrosis in both diaphragm and gastrocnemius muscles compared to wild-type controls (p = 0.003). Mdx diaphragm was fibrotic in aged mice as well (p = 0.0235), whereas the gastrocnemius muscle in these animals was not fibrotic. We did not measure a significant difference in collagen staining between wild-type and mdx gastrocnemius muscles. The results of this study support previous reports that the moderately-affected mdx/utrn+/- mouse is a better model of DMD, and we show here that this difference is apparent by 2 months of age.
    PLoS ONE 01/2015; 10(1):e0117306. DOI:10.1371/journal.pone.0117306 · 3.53 Impact Factor