Article

Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS.

Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, 68198, USA.
The Journal of Immunology (Impact Factor: 5.36). 08/2009; 183(1):661-9. DOI: 10.4049/jimmunol.0900274
Source: PubMed

ABSTRACT Antiretroviral therapy (ART) shows variable blood-brain barrier penetration. This may affect the development of neurological complications of HIV infection. In attempts to attenuate viral growth for the nervous system, cell-based nanoformulations were developed with the focus on improving drug pharmacokinetics. We reasoned that ART carriage could be facilitated within blood-borne macrophages traveling across the blood-brain barrier. To test this idea, an HIV-1 encephalitis (HIVE) rodent model was used where HIV-1-infected human monocyte-derived macrophages were stereotactically injected into the subcortex of severe combined immunodeficient mice. ART was prepared using indinavir (IDV) nanoparticles (NP, nanoART) loaded into murine bone marrow macrophages (BMM, IDV-NP-BMM) after ex vivo cultivation. IDV-NP-BMM was administered i.v. to mice resulting in continuous IDV release for 14 days. Rhodamine-labeled IDV-NP was readily observed in areas of HIVE and specifically in brain subregions with active astrogliosis, microgliosis, and neuronal loss. IDV-NP-BMM treatment led to robust IDV levels and reduced HIV-1 replication in HIVE brain regions. We conclude that nanoART targeting to diseased brain through macrophage carriage is possible and can be considered in developmental therapeutics for HIV-associated neurological disease.

Download full-text

Full-text

Available from: Christopher Destache, Jul 04, 2015
0 Followers
 · 
146 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: On 18 July 2014, the National Institute of Mental Health in collaboration with ViiV Health Care and Boehringer Ingelheim supported a symposium on HIV eradication and what it meant for the brain. The symposium was an affiliated event to the 20th International AIDS Conference. The meeting was held in Melbourne, Australia, and brought together investigators currently working on HIV eradication together with investigators who are working on the neurological complications of HIV. The purpose of the meeting was to bring the two fields of HIV eradication and HIV neurology together to foster dialogue and cross talk to move the eradication field forward in the context of issues relating to the brain as a potential reservoir of HIV. The outcomes of the symposium were that there was substantive but not definitive evidence for the brain as an HIV reservoir that will provide a challenge to HIV eradication. Secondly, the brain as a clinically significant reservoir for HIV is not necessarily present in all patients. Consequently, there is an urgent need for the development of biomarkers to identify and quantify the HIV reservoir in the brain. Lastly, when designing and developing eradication strategies, it is critical that approaches to target the brain reservoir be included.
    Journal of NeuroVirology 03/2015; 21(3). DOI:10.1007/s13365-015-0322-6 · 3.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Targeted delivery of drugs and imaging agents to inflamed tissues, as in the cases of cancer, Alzheimer's disease, Parkinson's disease, and arthritis, represents one of the major challenges in drug delivery. Monocytes possess a unique ability to target and penetrate into sites of inflammation. Here, we describe a broad approach to take advantage of the natural ability of monocytes to target and deliver flat polymeric particles ("Cellular Backpacks") to inflamed tissues. Cellular backpacks attach strongly to the surface of monocytes but do not undergo phagocytosis due to backpack's size, disk-like shape and flexibility. Following attachment of backpacks, monocytes retain important cellular functions including transmigration through and endothelial monolayer and differentiation into macrophages. In two separate in vivo inflammation models, backpack-laden monocytes exhibit increased targeting to inflamed tissues. Cellular backpacks, and their abilities to attach to monocytes without impairing monocyte functions and 'hitchhike' to a variety of inflamed tissues, offer a new platform for both cell-mediated therapies and broad targeting of inflamed tissues. Copyright © 2014. Published by Elsevier B.V.
    Journal of Controlled Release 12/2014; 199. DOI:10.1016/j.jconrel.2014.11.027 · 7.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As systemic cancer therapies improve and are able to control metastatic disease outside the central nervous system, the brain is increasingly the first site of relapse. The blood-brain barrier (BBB) represents a major challenge to the delivery of therapeutics to the brain. Macrophages originating from circulating monocytes are able to infiltrate brain metastases while the BBB is intact. Here, we show that this ability can be exploited to deliver both diagnostic and therapeutic nanoparticles specifically to experimental brain metastases of breast cancer.
    12/2012; 3(1-6):47-54. DOI:10.1007/s12645-012-0029-9