Emerging concepts in biomarker discovery; the US-Japan Workshop on Immunological Molecular Markers in Oncology.

Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
Journal of Translational Medicine (Impact Factor: 3.99). 07/2009; 7:45. DOI: 10.1186/1479-5876-7-45
Source: PubMed

ABSTRACT Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations. Converging concepts were identified: enhanced knowledge of interferon-related pathways was found to be central to the understanding of immune-mediated tissue-specific destruction (TSD) of which tumor rejection is a representative facet. Although the expression of interferon-stimulated genes (ISGs) likely mediates the inflammatory process leading to tumor rejection, it is insufficient by itself and the associated mechanisms need to be identified. It is likely that adaptive immune responses play a broader role in tumor rejection than those strictly related to their antigen-specificity; likely, their primary role is to trigger an acute and tissue-specific inflammatory response at the tumor site that leads to rejection upon recruitment of additional innate and adaptive immune mechanisms. Other candidate systemic and/or tissue-specific biomarkers were recognized that might be added to the list of known entities applicable in immunotherapy trials. The need for a systematic approach to biomarker discovery that takes advantage of powerful high-throughput technologies was recognized; it was clear from the current state of the science that immunotherapy is still in a discovery phase and only a few of the current biomarkers warrant extensive validation. It was, finally, clear that, while current technologies have almost limitless potential, inadequate study design, limited standardization and cross-validation among laboratories and suboptimal comparability of data remain major road blocks. The institution of an interactive consortium for high throughput molecular monitoring of clinical trials with voluntary participation might provide cost-effective solutions.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The elucidation of driver mutations involved in the molecular pathogenesis of cancer has led to a surge in the application of novel targeted therapeutics in lung cancer. Novel oncologic research continues to lead investigators towards targeting personalized tumor characteristics rather than applying targeted therapy to broad patient populations. Several driver genes, in particular epidermal growth factor receptor (EGFR) and ALK fusions, are the earliest to have made their way into clinical trials. The avant-garde role of genomic profiling has led to important clinical challenges when adapting current standard treatments to personalized oncologic care. This new frontier of medicine requires newer biomarkers for toxicity that will identify patients at risk, as well as, new molecular markers to predict and assess clinical outcomes. Thus far, several signature genes have been developed to predict outcome as well as genetic factors related to inflammation to predict toxicity.
    04/2014; 6(4):387-398. DOI:10.3978/j.issn.2072-1439.2013.12.04
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently the prevalence of obesity has increased dramatically across much of the world. Obesity, as a complex, multifactorial disease, and its health consequences probably result from the interplay of environmental, genetic, and behavioral factors. Several lines of evidence support the theory that obesity is programmed during early development and that environmental exposures can play a key role. We therefore hypothesize that the current epidemic might associated with the influence of chemical exposures upon genetically controlled developmental pathways, leading to metabolic disorders. Some environmental chemicals, such as PCBs and pesticide residues, are widespread in food, drinking water, soil, and they exert multiple effects including estrogenic on cellular processes; some have been shown to affect the development of obesity, insulin resistance, type 2 diabetes, and metabolic syndrome. To bring these lines of evidence together and address an important health problem, this narrative review has been primarily designed to address PCBs exposures that have linked with human disease, obesity in particular, and to assess the effects of PCBs on gene expression in a highlyexposed population. The results strongly suggest that further research into the specific mechanisms of PCBs-associated diseases is warranted.
    Current Pharmaceutical Biotechnology 11/2014; 15(11):1058-68. DOI:10.2174/1389201015666141122203509 · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor infiltrating lymphocytes (TIL) and histological regression in primary melanoma are generally considered indicators of the local immune response but their roles as prognostic factors have been variably reported. We examined the prognostic role of these variables in patients with high risk (T4) primary melanomas in a large series of patients with long-term follow-up. From a prospectively maintained cohort of patients diagnosed between 1971 and 2004, 161 patients were retrospectively identified with primary thick melanomas (>4 mm), no clinical evidence of regional nodal disease (RND) at diagnosis and complete histopathologic data. Univariate and multivariate Cox regression models were performed to identify clinical and histopathologic predictors of disease-specific survival (DSS) and to identify subgroups with differential survival. Factors significantly associated with decreased DSS by univariate analysis included male gender, age ≥ 60 years, axial anatomic location, presence of ulceration, RND, absence of TIL, and presence of regression. In the final multivariate model, TIL and regression, as interacting variables, and RND status remained significantly associated with DSS. In the presence of TIL, concomitant regression was associated with significantly worse survival (p ≤ 0.0001). In the absence of TIL, there was no effect of regression on survival (p = 0.324). Primary TIL and regression status and RND status are independently associated with melanoma-specific survival in patients with T4 melanomas; presence of TIL in the primary melanoma with concomitant radial growth phase regression is associated with a poor prognosis and may reflect an ineffective local regional immune response.
    Annals of Surgical Oncology 07/2013; 20(11). DOI:10.1245/s10434-013-3086-3 · 3.94 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014