In situ formation, manipulation, and imaging of droplet-encapsulated fibrin networks

Max Planck Institute for Dynamics & Self-Organization, Bunsenstrasse 10, 37073, Göttingen, Germany.
Lab on a Chip (Impact Factor: 5.75). 08/2009; 9(13):1933-41. DOI: 10.1039/b820511f
Source: PubMed

ABSTRACT The protein fibrin plays a principal role in blood clotting and forms robust three dimensional networks. Here, microfluidic devices have been tailored to strategically generate and study these bionetworks by confinement in nanoliter volumes. The required protein components are initially encapsulated in separate droplets, which are subsequently merged by electrocoalescence. Next, distinct droplet microenvironments are created as the merged droplets experience one of two conditions: either they traverse a microfluidic pathway continuously, or they "park" to fully evolve an isotropic network before experiencing controlled deformations. High resolution fluorescence microscopy is used to image the fibrin networks in the microchannels. Aggregation (i.e."clotting") is significantly affected by the complicated flow fields in moving droplets. In stopped-flow conditions, an isotropic droplet-spanning network forms after a suitable ripening time. Subsequent network deformation, induced by the geometric structure of the microfluidic channel, is found to be elastic at low rates of deformation. A shape transition is identified for droplets experiencing rates of deformation higher than an identified threshold value. In this condition, significant densification of protein within the droplet due to hydrodynamic forces is observed. These results demonstrate that flow fields considerably affect fibrin in different circumstances exquisitely controlled using microfluidic tools.


Available from: Ralf Seemann, Apr 16, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The flow topology in moving microdroplets has a significant impact on the behaviour of encapsulated objects and hence on applications of the technology. This study reports on a systematic investigation of the flow field inside droplets moving in a rectangular microchannel, by means of micro-particle image velocimetry (µPIV). Various water/oil (w/o) fluid mixtures were studied in order to elucidate the effects of a number of parameters such as capillary number (Ca), droplet geometry, viscosity ratio and interfacial tension. A distinct change in flow topology was observed at intermediate Ca ranging from 10-3 to 10-1, in surfactant-laden droplets, which was attributed primarily to the viscosity ratio of the two phases rather than the Marangoni effect expected in such systems. W/o droplet systems of lower inner-to-outer viscosity ratios tend to exhibit the well-known flow pattern characterised by a parabola-like profile in the droplet bulk-volume, surrounded by two counter rotating recirculation zones on either side of the droplet axis. As the viscosity ratio between the two phases is increased, the flow pattern becomes more uniform, exhibiting low velocities in the droplet bulk-volume and higher-reversed velocities along the w/o interface. The Ca and droplet geometry had no effect on the observed flow topology change. The study highlights the complex, three-dimensional (3D) nature of the flow inside droplets in rectangular microchannels and demonstrates the ability to control the droplet flow environment by adjusting the viscosity ratio between the two phases.
    Lab on a Chip 07/2014; DOI:10.1039/C4LC00671B · 5.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intermediate filaments (IFs) are fiber-forming proteins and part of the cytoskeleton of eukaryotes. In vitro the network formation of purified IF systems is mediated, for example, by the interaction with multivalent ions. The understanding of these interaction mechanisms increases the knowledge of the cytoskeleton on a fundamental level. Here, we employ time-lapse fluorescence microscopy to directly image the evolution of network formation of vimentin IFs upon addition of divalent ions. We are thus able to follow the process starting a few seconds after the first encounter of free filaments and ions up to several minutes when the networks are in equilibrium. The local protein density in the compacted networks can reach a factor of 45 higher than the original solution concentration. The competition between mono- and divalent ion condensation onto the protein explains our observations and reveals the polyelectrolyte nature of vimentin as a reason for the protein attraction in the presence of small cations. The method for time-lapse studies in microfluidic drops presented here can be generalized to other dynamic systems.
    Lab on a Chip 05/2014; 14(15). DOI:10.1039/c3lc51418h · 5.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report a microfluidic approach to generate aqueous droplets in oil of different dimensionality, stabilized by a lipid monolayer, to systematically probe the polymerization of bacterial cell-division protein FtsZ into fibrous networks as a function of the concentrations of crowding agent, FtsZ, and GTP. FtsZ bundles confined in droplets were dynamic, and their distribution depended on the intrinsic properties of the system and restrictions imposed by the spatial boundaries.
    Soft Matter 01/2013; 9(44):10493. DOI:10.1039/c3sm51163d · 4.15 Impact Factor