Narrow band resonant grating of 100% reflection under normal incidence

Universitätsklinikum Jena, Jena, Thuringia, Germany
Optics Express (Impact Factor: 3.49). 01/2007; 14(26):12613-22. DOI: 10.1364/OE.14.012613
Source: PubMed


A resonant grating mirror comprising a multilayer submirror and a grating slab waveguide submirror exhibiting constructive mutual reflection is shown experimentally to provide zero transmission. Its reflection line width of less than 1 nm, its polarization selectivity and low overall loss make the device usable as a longitudinal mode filter in a disk laser in the 1000-1100 nm wavelength range.

Download full-text


Available from: Svetlen Tonchev,
  • Source
    • "Abnormal reflection from resonant grating mirror structures can be used to achieve narrow enough angular reflectivity spectrum to increase the mode area of a microchip [23], [31], [32]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Angularly selective mirrors (ASMs) are proposed as a means to expand the mode area and modal discrimination of microchip lasers. ASMs used as output couplers selectively reflect incoming k vectors over a narrow angular range, while they transmit more inclined components. The eigenvalue problem of a microchip resonator equipped with a Gaussian ASM is solved analytically in the paraxial optics approximation using the ABCD matrix formalism. The narrow angular distribution of the reflected beam produces, through the laws of diffraction, a significant increase of the mode size and improved transverse mode discrimination, at the expense of higher oscillation threshold due to larger output coupling losses. Simulations performed using the parameters of Yb<sup>3+</sup>-doped YAG material show that one order of magnitude increase of the mode area can reasonably be achieved without causing overheating and thermal fracture. ASMs can be directly deposited on the active material in the form of a resonant grating mirror. This technology involves only planar batch processes that retain the mass production advantage of microchip lasers. The significant increase of brightness of microchips expected from this innovation will give rise to more effective and more compact devices and new applications.
    IEEE Journal of Quantum Electronics 08/2008; 44(7-44):628 - 637. DOI:10.1109/JQE.2008.921381 · 1.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Le travail de recherche effectué dans cette thèse couvre deux domaines de l'optique physique et technique, tous deux traités au Laboratoire Hubert Curien par deux équipes différentes. Le but est de développer un réseau résonnant d'ordre zéro en vue d'une application à la mise en forme temporelle d'impulsions laser ultra-brèves. Pour moduler temporellement une impulsion ultra-brève, une modulation spectrale est utilisable. Or il est connu que la réflexion résonnante d'un guide planaire couplé par réseau montre un changement soudain dans le spectre au voisinage de la résonance, notamment dans la phase. Il convient donc de qualifier et de quantifier les changements d'amplitude et de phase spectrales que peut produire un réseau résonnant. Pour ce faire, le réseau résonnant est étudié suivant l'approche phénoménologique par modes couplés. Un miroir est ensuite ajouté à ce simple guide planaire couplé par réseau dans le but d'obtenir une modulation de phase pure pour une conservation de l'énergie réfléchie sur tout le spectre de l'impulsion. La phase ainsi induite est donnée par la nature de l'effet résonnant et sa forme est figée par le caractère statique des paramètres opto-géométriques de la structure. Cependant, une configuration en cascade par réinjection du faisceau permet de multiplier le déphasage et, par conséquent, de varier dans une certaine mesure les profils temporels accessibles, en particulier de dédoubler une impulsion avec un écart temporel variable et qui peut être grand. Un miroir résonnant a été conçu puis fabriqué et a permis de démontrer expérimentalement avec succès l'effet de dédoublement temporel d'un tel élément optique sur une impulsion femtoseconde.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The algebraic polar expression of resonant reflection from a grating waveguide excited by a free space wave is formulated in terms of the physically meaningful phenomenological parameters of the coupled wave formalism. The reflection coefficient is simply represented as a circle in the complex plane which sheds light on the behaviour of the modulus and phase of anomalous reflection. Analytical expressions are derived for the phenomenological parameters that can now be calculated from optogeometrical quantities which are simple to measure. The relevance and usefulness of bridging the two formalisms is shown in the example of the design of an evanescent wave biosensor. Note : This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http:// Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
    Optics Express 08/2007; 15(15):9831-42. DOI:10.1364/OE.15.009831 · 3.49 Impact Factor
Show more